Techno-economic and life cycle analysis of synthetic natural gas production from low-carbon H2 and point-source or atmospheric CO2 in the United States

被引:3
|
作者
Lee, Kyuha [1 ]
Sun, Pingping [1 ]
Elgowainy, Amgad [1 ]
Baek, Kwang Hoon [1 ]
Bobba, Pallavi [1 ]
机构
[1] Argonne Natl Lab, Syst Assessment Ctr, Energy Syst & Infrastructure Div, Lemont, IL 60439 USA
关键词
Synthetic natural gas; Process modeling; Techno-economic analysis; Life cycle analysis; CO2 capture and utilization; POWER-TO-METHANE; THERMODYNAMIC ANALYSIS; TRIETHYLENE GLYCOL; NI-FE; DEHYDRATION; HYDROGEN; COST; ELECTRICITY; SIMULATION; EMISSIONS;
D O I
10.1016/j.jcou.2024.102791
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Synthetic natural gas (SNG) is of great interest in reducing fossil energy consumption while maintaining compatibility with existing NG infrastructure and end-use applications equipment. SNG can be produced using clean H-2 generated from renewable or nuclear energy and CO2 captured from stationary sources or the atmosphere. In this study, we develop an engineering process model of SNG production using Aspen Plus (R) and production scales reported by the industry. We examine the levelized cost and life cycle greenhouse gas (GHG) emissions of SNG production under various CO2 supply scenarios. Considering the higher cost of H-2 transportation compared with CO2 transportation, we assume that CO2 feedstock is transported via pipeline to the H-2 production location, which is collocated with the SNG plant. We also evaluate the cost of CO2 captured from the atmosphere, assuming the direct air capture process can occur near the SNG facility. Depending on the CO2 supply chain, the levelized cost of SNG is estimated to be in the range of $45-76 per million British thermal units (MMBtu) on a higher heating value (HHV) basis. The SNG production cost may be reduced to $27-57/MMBtu-HHV by applying a tax credit available in the United States for low-carbon H-2 production (45 V). With a lower electricity price of 3 phi/kWh for water electrolysis and accounting for a 45 V tax credit, the SNG cost reaches parity with the cost of fossil NG. Depending on the CO2 supply chain, SNG can reduce life cycle GHG emissions by 52-88 % compared with fossil NG.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Techno-economic analysis of a natural gas combined cycle integrated with a Ca-Cu looping process for low CO2 emission power production
    Martinez, I
    Martini, M.
    Riva, L.
    Gallucci, F.
    Annaland, M. Van Sint
    Romano, M. C.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2019, 81 : 216 - 239
  • [12] Techno-economic assessment of membrane-assisted gas switching reforming for pure H2 production with CO2 capture
    Wassie, Solomon A.
    Cloete, Schalk
    Spallina, Vincenzo
    Gallucci, Fausto
    Amini, Shahriar
    Annaland, Martin van Sint
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2018, 72 : 163 - 174
  • [13] Techno-economic Evaluation of Cryogenic Networks for Separation of CO2 from Natural Gas
    Maqsood, Khuram
    Ali, Abulhassan
    Shariff, Azmi B. Mohd.
    Ganguly, Saibal
    PROCESS AND ADVANCED MATERIALS ENGINEERING, 2014, 625 : 635 - 638
  • [14] A techno-economic and life cycle assessment for the production of green methanol from CO2: catalyst and process bottlenecks
    Cordero-Lanzac, Tomas
    Ramirez, Adrian
    Navajas, Alberto
    Gevers, Lieven
    Brunialti, Sirio
    Gandia, Luis M.
    Aguayo, Andres T.
    Sarathy, S. Mani
    Gascon, Jorge
    JOURNAL OF ENERGY CHEMISTRY, 2022, 68 : 255 - 266
  • [15] A techno-economic and life cycle assessment for the production of green methanol from CO2: catalyst and process bottlenecks
    Tomas Cordero-Lanzac
    Adrian Ramirez
    Alberto Navajas
    Lieven Gevers
    Sirio Brunialti
    Luis M.Gandía
    Andrés T.Aguayo
    S.Mani Sarathy
    Jorge Gascon
    JournalofEnergyChemistry, 2022, 68 (05) : 255 - 266
  • [16] Techno-economic comparison of optimized natural gas combined cycle power plants with CO2 capture
    Kazemi, Abolghasem
    Moreno, Jovita
    Iribarren, Diego
    ENERGY, 2022, 255
  • [17] Techno-economic analysis and network design for CO2 conversion to jet fuels in the United States
    Zhou, Rui
    Jin, Mingzhou
    Li, Zhenglong
    Xiao, Yang
    Mccollum, David
    Li, Alicia
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2025, 210
  • [18] A Detailed Process and Techno-Economic Analysis of Methanol Synthesis from H2 and CO2 with Intermediate Condensation Steps
    Lacerda de Oliveira Campos, Bruno
    John, Kelechi
    Beeskow, Philipp
    Herrera Delgado, Karla
    Pitter, Stephan
    Dahmen, Nicolaus
    Sauer, Jörg
    PROCESSES, 2022, 10 (08)
  • [19] Improving methanol synthesis from carbon-free H2 and captured CO2: A techno-economic and environmental evaluation
    Szima, Szabolcs
    Cormos, Calin-Cristian
    JOURNAL OF CO2 UTILIZATION, 2018, 24 : 555 - 563
  • [20] A novel system for electricity and synthetic natural gas production from captured CO2: Techno-economic evaluation and multi-objective optimization
    Beyrami, Javid
    Jalili, Mohammad
    Ziyaei, Mozhgan
    Chitsaz, Ata
    Rosen, Marc A.
    JOURNAL OF CO2 UTILIZATION, 2022, 63