Wavefield decomposition for viscoelastic anisotropic media

被引:0
|
作者
Hao, Qi [1 ]
Tsvankin, Ilya [2 ]
机构
[1] Jilin Univ, Coll Geoexplorat Sci & Technol, Changchun, Peoples R China
[2] Colorado Sch Mines, Ctr Wave Phenomena, Dept Geophys, Golden, CO USA
基金
中国国家自然科学基金;
关键词
MODE SEPARATION; ATTENUATION ANISOTROPY; VECTOR DECOMPOSITION; PROPAGATION; DOMAIN; 2D;
D O I
10.1190/GEO2023-0583.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Separating wave modes on seismic records is an essential step in imaging of multicomponent seismic data. Viscoelastic anisotropic models provide a realistic description of subsurface formations that exhibit anisotropy of velocity and attenuation. However, mode separation has not been extended to viscoelastic anisotropic media yet. Here, we propose an efficient approach to wavefield decomposition that takes velocity and attenuation anisotropy into account. Our algorithm operates in the frequency-wavenumber domain and, therefore, is suitable for general dissipative models. We present exact equations for wavefield decomposition in arbitrarily anisotropic attenuative homogeneous media. Then the proposed approach is applied to viscoelastic constant-Q VTI (transversely isotropic with a vertical symmetry axis) models. Numerical examples demonstrate the accuracy and efficiency of our approach for piecewise-homogeneous media characterized by pronounced velocity and attenuation anisotropy.
引用
收藏
页码:C159 / C169
页数:11
相关论文
共 50 条
  • [31] Slowness vectors in viscoelastic anisotropic media and their physical interpretation and significance
    Wang, Di
    Zhou, Bing
    Greenhalgh, Stewart
    Bai, Chao-Ying
    Li, Xing-Wang
    GEOPHYSICS, 2024, 89 (03) : C117 - C128
  • [32] VISCOELASTIC MODEL AND ACOUSTIC-WAVE PROPAGATION IN ANISOTROPIC MEDIA
    VACHER, R
    BOYER, L
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1975, 58 (02): : 385 - 391
  • [33] Reflection/transmission laws for slowness vectors in viscoelastic anisotropic media
    V. Červený
    Studia Geophysica et Geodaetica, 2007, 51 : 391 - 410
  • [34] ATTENUATION AND QUALITY FACTOR SURFACES IN ANISOTROPIC-VISCOELASTIC MEDIA
    CARCIONE, JM
    CAVALLINI, F
    MECHANICS OF MATERIALS, 1995, 19 (04) : 311 - 327
  • [35] Plane waves in viscoelastic anisotropic media -: I.: Theory
    Cerveny, V
    Psencík, I
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2005, 161 (01) : 197 - 212
  • [36] Ray velocity and ray attenuation in homogeneous anisotropic viscoelastic media
    Vavrycuk, Vaclav
    GEOPHYSICS, 2007, 72 (06) : D119 - D127
  • [37] Finite-element methods for viscoelastic and azimuthally anisotropic media
    Du, QZ
    Yang, HZ
    ACTA PHYSICA SINICA, 2003, 52 (08) : 2010 - 2014
  • [38] Oscillatory numerical experiments in finely layered anisotropic viscoelastic media
    Picotti, Stefano
    Carcione, Jose M.
    Santos, Juan E.
    COMPUTERS & GEOSCIENCES, 2012, 43 : 83 - 89
  • [39] Asymptotic Green's function in homogeneous anisotropic viscoelastic media
    Vavrycuk, Vaclav
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2086): : 2689 - 2707
  • [40] Electromagnetic source decomposition in bi-anisotropic media
    Helsinki Univ of Technology, Espoo, Finland
    J Electromagn Waves Appl, 1 (1-21):