New commercial wipes inhibit the dispersion and adhesion of Staphylococcus aureus and Pseudomonas aeruginosa biofilms

被引:1
|
作者
Di Fermo, Paola [1 ]
Diban, Firas [2 ]
Ancarani, Elisabetta [3 ]
Yu, Kelvin [4 ]
D'Arcangelo, Sara [2 ]
D'Ercole, Simonetta [1 ]
Di Lodovico, Silvia [2 ]
Di Giulio, Mara [2 ]
Cellini, Luigina [2 ]
机构
[1] Univ G Annunzio Chieti Pescara, Dept Med Oral & Biotechnol Sci, I-66100 Chieti, Pescara, Italy
[2] Univ G Annunzio Chieti Pescara, Dept Pharm, I-66100 Chieti, Pescara, Italy
[3] Lombarda HSrl, I-20080 Milan, Italy
[4] Shanghai Joy Crown Ind Co Ltd, Shanghai 200125, Peoples R China
关键词
Staphylococcus aureus; Pseudomonas aeruginosa; antimicrobial wipes; hospital acquired infections; surface disinfection; antibiofilm activity; DISINFECTION; SURFACES;
D O I
10.1093/jambio/lxae234
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Aim Bacterial biofilms can form on surfaces in hospitals, clinics, farms, and food processing plants, representing a possible source of infections and cross-contamination. This study investigates the effectiveness of new commercial wipes against Staphylococcus aureus and Pseudomonas aeruginosa biofilms (early attachment and formed biofilms), assessing LH SALVIETTE wipes (Lombarda H S.r.l.) potential for controlling biofilm formation.Methods and results The wipes efficacy was studied against the early attachment phase and formed biofilm of S. aureus ATCC 6538 and P. aeruginosa ATCC 15442 on a polyvinyl chloride (PVC) surface, following a modified standard test EN 16615:2015, measuring Log10 reduction and cell viability using live/dead staining. It was also evaluated the wipes anti-adhesive activity over time (3 h, 2 4h), calculating CFU.mL-1 reduction. Data were analyzed using t-student test. The wipes significantly reduced both early phase and formed S. aureus biofilm, preventing dispersion on PVC surfaces. Live/dead imaging showed bacterial cluster disaggregation and killing action. The bacterial adhesive capability decreased after short-time treatment (3 h) with the wipes compared to 24 h.Conclusions Results demonstrated decreased bacterial count on PVC surface both for early attachment phase and formed biofilms, also preventing the bacterial biofilm dispersion.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Reduction in Pseudomonas aeruginosa and Staphylococcus aureus biofilms from implant materials in a diffusion dominated environment
    Moley, James P.
    McGrath, Mary S.
    Granger, Jeffrey F.
    Stoodley, Paul
    Dusane, Devendra H.
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2018, 36 (11) : 3081 - 3085
  • [22] Activity of disinfectants against multispecies biofilms formed by Staphylococcus aureus, Candida albicans and Pseudomonas aeruginosa
    Kart, Didem
    Tavernier, Sarah
    Van Acker, Heleen
    Nelis, Hans J.
    Coenye, Tom
    BIOFOULING, 2014, 30 (03) : 377 - 383
  • [23] Impact of growth temperature and surface type on the resistance of Pseudomonas aeruginosa and Staphylococcus aureus biofilms to disinfectants
    Abdallah, Marwan
    Khelissa, Oussama
    Ibrahim, Ali
    Benoliel, Corinne
    Heliot, Laurent
    Dhulster, Pascal
    Chihib, Nour-Eddine
    INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 2015, 214 : 38 - 47
  • [24] Inhibitory efficacy of various antibiotics on matrix and viable mass of Staphylococcus aureus and Pseudomonas aeruginosa biofilms
    Tote, K.
    Vanden Berghe, D.
    Deschacht, M.
    de Wit, K.
    Maes, L.
    Cos, P.
    INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2009, 33 (06) : 525 - 531
  • [25] Antibacterial effect of the laser-generated Se nanocoatings on Staphylococcus aureus and Pseudomonas aeruginosa biofilms
    Ionin, A. A.
    Ivanova, A. K.
    Khmel'nitskii, R. A.
    Klevkov, Yu V.
    Kudryashov, S. I.
    Levchenko, A. O.
    Nastulyavichus, A. A.
    Rudenko, A. A.
    Saraeva, I. N.
    Smirnov, N. A.
    Zayarny, D. A.
    Gonchukov, S. A.
    Tolordava, E. R.
    LASER PHYSICS LETTERS, 2018, 15 (01)
  • [26] Polymicrobial interaction and biofilms between Staphylococcus aureus and Pseudomonas aeruginosa: an underestimated concern in food safety
    Xu, Zhenbo
    Xie, Jinghong
    Soteyome, Thanapop
    Peters, Brian M.
    Shirtliff, Mark E.
    Liu, Junyan
    Harro, Janette M.
    CURRENT OPINION IN FOOD SCIENCE, 2019, 26 : 57 - 64
  • [27] Pseudomonas aeruginosa, Staphylococcus aureus, and fluoroquinolone use
    MacDougall, C
    Harpe, SE
    Powell, JP
    Johnson, CK
    Edmond, MB
    Polk, RE
    EMERGING INFECTIOUS DISEASES, 2005, 11 (08) : 1197 - 1204
  • [28] New Strategies Targeting Virulence Factors of Staphylococcus aureus and Pseudomonas aeruginosa
    Francois, Bruno
    Luyt, Charles-Edouard
    Stover, C. Kendall
    Brubaker, Jeffery O.
    Chastre, Jean
    Jafri, Hasan S.
    SEMINARS IN RESPIRATORY AND CRITICAL CARE MEDICINE, 2017, 38 (03) : 346 - 358
  • [29] Pseudomonas aeruginosa Alginate Benefits Staphylococcus aureus?
    Schurr, Michael J.
    JOURNAL OF BACTERIOLOGY, 2020, 202 (08)
  • [30] Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis
    Qin, Zhiqiang
    Yang, Liang
    Qu, Di
    Molin, Soeren
    Tolker-Nielsen, Tim
    MICROBIOLOGY-SGM, 2009, 155 : 2148 - 2156