Estimates of the Kobayashi metric and Gromov hyperbolicity on convex domains of finite type

被引:0
|
作者
Wang, Hongyu [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Key Lab Math & Informat Networks, Minist Educ, Beijing, Peoples R China
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2024年 / 110卷 / 02期
关键词
PSEUDOCONVEX DOMAINS; EXTREMAL BASES;
D O I
10.1112/jlms.12966
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a local estimate for the Kobayashi distance on a bounded convex domain of finite type, which relates to a local pseudodistance near the boundary. The estimate is precise up to a bounded additive term. Also, we conclude that the domain equipped with the Kobayashi distance is Gromov hyperbolic that gives another proof of the result of Zimmer.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Gromov hyperbolicity of pseudo-convex Levi corank one domains
    Zhang, Ben
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2025,
  • [22] The Kobayashi infinitesimal metric and characterization of bounded convex domains
    Vigué, JP
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (09): : 867 - 876
  • [23] Gromov hyperbolicity of Denjoy Domains
    Venancio Alvarez
    Ana Portilla
    Jose M. Rodriguez
    Eva Touris
    Geometriae Dedicata, 2006, 121 : 221 - 245
  • [24] Gromov hyperbolicity of Denjoy domains
    Alvarez, Venancio
    Portilla, Ana
    Rodriguez, Jose M.
    Touris, Eva
    GEOMETRIAE DEDICATA, 2006, 121 (01) : 221 - 245
  • [25] Hölder estimates on convex domains of finite type
    Klas Diederich
    Bert Fischer
    John Erik Fornæss
    Mathematische Zeitschrift, 1999, 232 : 43 - 61
  • [26] Holder estimates on lineally convex domains of finite type
    Diederich, Klas
    Fischer, Bert
    MICHIGAN MATHEMATICAL JOURNAL, 2006, 54 (02) : 341 - 352
  • [27] Ck estimates for convex domains of finite type in Cn
    Alexandre, W
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (01) : 23 - 26
  • [28] Sharp Holder estimates on convex domains of finite type
    Cumenge, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (10): : 1077 - 1080
  • [29] $L^p$ estimates on convex domains of finite type
    Bert Fischer
    Mathematische Zeitschrift, 2001, 236 : 401 - 418
  • [30] Optimal Sobolev estimates for ¯∂ on convex domains of finite type
    Heungju Ahn
    Hong Rae Cho
    Mathematische Zeitschrift, 2003, 244 : 837 - 857