Infinite-dimensional symmetries of two-dimensional generalized Burgers equations

被引:5
|
作者
Gungor, F. [1 ]
机构
[1] Dogus Univ, Fac Arts & Sci, Dept Math, TR-34722 Istanbul, Turkey
关键词
KADOMTSEV-PETVIASHVILI EQUATION; GROUP CLASSIFICATION; NONLINEAR ACOUSTICS; INVARIANT; ALGEBRAS;
D O I
10.1063/1.3456061
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The conditions for a class of generalized Burgers equations which a priori involve nine arbitrary functions of one or two variables to allow an infinite-dimensional symmetry algebra are determined. Although this algebra can involve up to two arbitrary functions of time, it does not allow a Virasoro subalgebra. This result reconfirms a long-standing fact that variable coefficient generalizations of a nonintegrable equation should be expected to remain as such. (C) 2010 American Institute of Physics. [doi:10.1063/1.3456061]
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Infinite-dimensional symmetries of two-dimensional coset models
    Lue, H.
    Perry, Malcolm J.
    Pope, C. N.
    [J]. NUCLEAR PHYSICS B, 2009, 806 (03) : 656 - 683
  • [2] INFINITE-DIMENSIONAL SYMMETRIES
    DOEBNER, HD
    TOLAR, J
    [J]. ANNALEN DER PHYSIK, 1990, 47 (2-3) : 116 - 122
  • [3] Conditional and Hidden Infinite-Dimensional Symmetries of Wave Equations
    I. Yehorchenko
    A. Vorobyova
    [J]. Ukrainian Mathematical Journal, 2022, 74 : 378 - 384
  • [4] Conditional and Hidden Infinite-Dimensional Symmetries of Wave Equations
    Yehorchenko, I
    Vorobyova, A.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2022, 74 (03) : 378 - 384
  • [5] INFINITE-DIMENSIONAL GENERALIZATIONS OF FINITE-DIMENSIONAL SYMMETRIES
    FRADKIN, ES
    LINETSKY, VY
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) : 1218 - 1226
  • [6] Generalized finite difference method for solving two-dimensional Burgers' equations
    Fan, Chia-Ming
    Li, Po-Wei
    [J]. 37TH NATIONAL CONFERENCE ON THEORETICAL AND APPLIED MECHANICS (37TH NCTAM 2013) & THE 1ST INTERNATIONAL CONFERENCE ON MECHANICS (1ST ICM), 2014, 79 : 55 - 60
  • [7] Stuart Vortices Extended to a Sphere Admits Infinite-Dimensional Generalized Symmetries
    Ifidon, E. O.
    [J]. STUDIES IN APPLIED MATHEMATICS, 2010, 125 (03) : 265 - 273
  • [8] Infinite-dimensional Lie groups of symmetries of the ideal MHD equilibrium equations
    Bogoyavlenskij, OI
    [J]. GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 713 - 716
  • [9] GENERALIZED TWO-DIMENSIONAL BURGERS AND KADOMTSEV-PETVIASHVILI EQUATIONS AND COLLIDING SOLITONS
    BRUGARINO, T
    PANTANO, P
    [J]. LETTERE AL NUOVO CIMENTO, 1984, 41 (06): : 187 - 190
  • [10] Realization of the infinite-dimensional symmetries of conformal mechanics
    Cadoni, M
    Carta, P
    Mignemi, S
    [J]. PHYSICAL REVIEW D, 2000, 62 (08) : 1 - 4