Kramers-Wannier Duality and Random-Bond Ising Model

被引:0
|
作者
Song, Chaoming [1 ]
机构
[1] Univ Miami, Dept Phys, Coral Gables, FL 33146 USA
关键词
Kramers-Wannier duality; Random-Bond Ising Model; disorder operator; zeta function; CRYSTAL STATISTICS; FRUSTRATION; OPERATORS; FERMIONS; ORDER;
D O I
10.3390/e26080636
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a new combinatorial approach to the Ising model incorporating arbitrary bond weights on planar graphs. In contrast to existing methodologies, the exact free energy is expressed as the determinant of a set of ordered and disordered operators defined on a planar graph and the corresponding dual graph, respectively, thereby explicitly demonstrating the Kramers-Wannier duality. The implications of our derived formula for the Random-Bond Ising Model are further elucidated.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] ENTROPY OF A RANDOM-BOND ISING CHAIN
    PUMA, M
    FERNANDEZ, JF
    PHYSICAL REVIEW B, 1978, 18 (03): : 1391 - 1394
  • [22] Critical dynamics of cluster algorithms in the random-bond Ising model
    Kanbur, Ulvi
    Vatansever, Zeynep Demir
    PHYSICAL REVIEW E, 2024, 109 (02)
  • [23] Criticality in the two-dimensional random-bond Ising model
    Cho, S
    Fisher, MPA
    PHYSICAL REVIEW B, 1997, 55 (02): : 1025 - 1031
  • [24] A non-perturbative approach to the random-bond Ising model
    Cabra, DC
    Honecker, A
    Mussardo, G
    Pujol, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (24): : 8415 - 8426
  • [25] NUMERICALLY EXACT SOLVABLE RANDOM-BOND ISING-MODEL
    MORGENSTERN, I
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 41 (02): : 147 - 151
  • [26] Random-bond Ising model and its dual in hyperbolic spaces
    Placke, Benedikt
    Breuckmann, Nikolas P.
    PHYSICAL REVIEW E, 2023, 107 (02)
  • [27] The Kramers-Wannier symmetry and S-duality in the two-dimensional gΦ4 theory
    Shalaev, BN
    THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 131 (02) : 621 - 628
  • [28] ANOMALOUS BEHAVIOR OF A RANDOM-BOND ISING FERROMAGNET
    KANEYOSHI, T
    SOLID STATE COMMUNICATIONS, 1985, 56 (09) : 791 - 793
  • [29] SCALING IN RANDOM-BOND ISING-MODELS
    THOMSEN, M
    FOK, MC
    PHYSICAL REVIEW B, 1989, 40 (04): : 2473 - 2476
  • [30] Kramers-Wannier dualities for WZW theories and minimal models
    Schweigert, Christoph
    Tsouchnika, Efrossini
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (05) : 773 - 789