Identifying who are unlikely to benefit from total knee arthroplasty using machine learning models

被引:0
|
作者
Liu, Xiaodi [1 ]
Liu, Yingnan [1 ,2 ]
Lee, Mong Li [1 ,2 ]
Hsu, Wynne [1 ,2 ]
Liow, Ming Han Lincoln [3 ]
机构
[1] Natl Univ Singapore, Inst Data Sci, Singapore, Singapore
[2] Natl Univ Singapore, Sch Comp, Singapore, Singapore
[3] Singapore Gen Hosp, Dept Orthopaed Surg, Singapore, Singapore
来源
NPJ DIGITAL MEDICINE | 2024年 / 7卷 / 01期
关键词
CLINICALLY IMPORTANT DIFFERENCES; OSTEOARTHRITIS; PAIN; SATISFACTION; IMPROVE; SF-36; SCORE; HIP;
D O I
10.1038/s41746-024-01265-8
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Identifying and preventing patients who are not likely to benefit long-term from total knee arthroplasty (TKA) would decrease healthcare expenditure significantly. We trained machine learning (ML) models (image-only, clinical-data only, and multimodal) among 5720 knee OA patients to predict postoperative dissatisfaction at 2 years. Dissatisfaction was defined as not achieving a minimal clinically important difference in postoperative Knee Society knee and function scores (KSS), Short Form-36 Health Survey [SF-36, divided into a physical component score (PCS) and mental component score (MCS)], and Oxford Knee Score (OKS). Compared to image-only models, both clinical-data only and multimodal models achieved superior performance at predicting dissatisfaction measured by AUC, clinical-data only model: KSS 0.888 (0.866-0.909), SF-PCS 0.836 (0.812-0.860), SF-MCS 0.833 (0.812-0.854), and OKS 0.806 (0.753-0.859); multimodal model: KSS 0.891 (0.870-0.911), SF-PCS 0.832 (0.808-0.857), SF-MCS 0.835 (0.811-0.856), and OKS 0.816 (0.768-0.863). Our findings highlighted that ML models using clinical or multimodal data were capable to predict post-TKA dissatisfaction.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Predicting total knee arthroplasty from ultrasonography using machine learning
    Tiulpin, Aleksei
    Saarakkala, Simo
    Mathiessen, Alexander
    Hammer, Hilde Berner
    Furnes, Ove
    Nordsletten, Lars
    Englund, Martin
    Magnusson, Karin
    [J]. OSTEOARTHRITIS AND CARTILAGE OPEN, 2022, 4 (04):
  • [2] Identifying patients who may benefit from deprescribing using machine learning predictions
    Pavon, J. M.
    Wei, M.
    Page, D.
    Zepel, L.
    Maciejewski, M.
    Clark, A.
    Schindler, N.
    Hastings, S. N.
    [J]. JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2024, 72 : S160 - S160
  • [3] Surgical Outcome Prediction in Total Knee Arthroplasty using Machine Learning
    Hossain, Belayat
    Morooka, Takatoshi
    Okuno, Makiko
    Nii, Manabu
    Yoshiya, Shinichi
    Kobashi, Syoji
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2019, 25 (01): : 105 - 115
  • [4] The application of machine learning to balance a total knee arthroplasty
    Verstraete, M. A.
    Moore, R. E.
    Roche, M.
    Conditt, M. A.
    [J]. BONE & JOINT OPEN, 2020, 1 (06): : 236 - 244
  • [5] The cost benefit of total knee arthroplasty
    Rorabeck, CH
    Murray, P
    [J]. ORTHOPEDICS, 1996, 19 (09) : 777 - 779
  • [6] Predicting surgical operative time in primary total knee arthroplasty utilizing machine learning models
    Yeo, Ingwon
    Klemt, Christian
    Melnic, Christopher M.
    Pattavina, Meghan H.
    De Oliveira, Bruna M. Castro
    Kwon, Young-Min
    [J]. ARCHIVES OF ORTHOPAEDIC AND TRAUMA SURGERY, 2023, 143 (06) : 3299 - 3307
  • [7] Predicting surgical operative time in primary total knee arthroplasty utilizing machine learning models
    Ingwon Yeo
    Christian Klemt
    Christopher M. Melnic
    Meghan H. Pattavina
    Bruna M. Castro De Oliveira
    Young-Min Kwon
    [J]. Archives of Orthopaedic and Trauma Surgery, 2023, 143 : 3299 - 3307
  • [8] Using Unsupervised Machine Learning to Predict Quality of Life After Total Knee Arthroplasty
    Hunter, Jennifer
    Soleymani, Farzan
    Viktor, Herna
    Michalowski, Wojtek
    Poitras, Stephane
    Beaule, Paul E.
    [J]. JOURNAL OF ARTHROPLASTY, 2024, 39 (03): : 677 - 682
  • [9] Transfusion after total knee arthroplasty can be predicted using the machine learning algorithm
    Jo, Changwung
    Ko, Sunho
    Shin, Woo Cheol
    Han, Hyuk-Soo
    Lee, Myung Chul
    Ko, Taehoon
    Ro, Du Hyun
    [J]. KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2020, 28 (06) : 1757 - 1764
  • [10] Transfusion after total knee arthroplasty can be predicted using the machine learning algorithm
    Changwung Jo
    Sunho Ko
    Woo Cheol Shin
    Hyuk-Soo Han
    Myung Chul Lee
    Taehoon Ko
    Du Hyun Ro
    [J]. Knee Surgery, Sports Traumatology, Arthroscopy, 2020, 28 : 1757 - 1764