Electromagnetic modeling of interference, confocal, and focus variation microscopy

被引:2
|
作者
Pahl, Tobias [1 ]
Rosenthal, Felix [1 ]
Breidenbach, Johannes [1 ]
Danzglock, Corvin [1 ]
Hagemeier, Sebastian [1 ]
Xu, Xin [1 ]
Kuenne, Marco [1 ]
Lehmann, Peter [1 ]
机构
[1] Univ Kassel, Fac Elect Engn & Comp Sci, Measurement Technol Grp, Kassel, Germany
来源
ADVANCED PHOTONICS NEXUS | 2024年 / 3卷 / 01期
关键词
interference microscopy; coherence scanning interferometry; confocal microscopy; focus variation microscopy; electromagnetic modeling; surface topography measurement; LINEAR-THEORY; SCATTERING; SURFACES; TOPOGRAPHY; FIELD;
D O I
10.1117/1.APN.3.1.016013
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a unified electromagnetic modeling of coherence scanning interferometry, confocal microscopy, and focus variation microscopy as the most common techniques for surface topography inspection with micro- and nanometer resolution. The model aims at analyzing the instrument response and predicting systematic deviations. Since the main focus lies on the modeling of the microscopes, the light-surface interaction is considered, based on the Kirchhoff approximation extended to vectorial imaging theory. However, it can be replaced by rigorous methods without changing the microscope model. We demonstrate that all of the measuring instruments mentioned above can be modeled using the same theory with some adaption to the respective instrument. For validation, simulated results are confirmed by comparison with measurement results.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] CONFOCAL DIFFERENTIAL INTERFERENCE CONTRAST (DIC) MICROSCOPY - INCLUDING A THEORETICAL-ANALYSIS OF CONVENTIONAL AND CONFOCAL DIC IMAGING
    COGSWELL, CJ
    SHEPPARD, CJR
    [J]. JOURNAL OF MICROSCOPY-OXFORD, 1992, 165 : 81 - 101
  • [42] A baffle improves axial resolution in confocal microscopy: Modeling experiments
    Ramshesh, VK
    Lemasters, JJ
    Gordon, GW
    [J]. BIOPHYSICAL JOURNAL, 2005, 88 (01) : 345A - 345A
  • [43] Modeling stem cell nucleus mechanics using confocal microscopy
    Zeke Kennedy
    Joshua Newberg
    Matthew Goelzer
    Stefan Judex
    Clare K. Fitzpatrick
    Gunes Uzer
    [J]. Biomechanics and Modeling in Mechanobiology, 2021, 20 : 2361 - 2372
  • [44] Heterodyne confocal microscopy using symmetrical shifted-focus phase filters
    Huang, Xiangdong
    Tan, Jiubin
    Wang, Weibo
    [J]. OPTICS EXPRESS, 2018, 26 (23): : 30183 - 30194
  • [45] Signal and Noise Modeling in Confocal Laser Scanning Fluorescence Microscopy
    Herberich, Gerlind
    Windoffer, Reinhard
    Leube, Rudolf E.
    Aach, Til
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2012, PT I, 2012, 7510 : 381 - 388
  • [46] Modeling stem cell nucleus mechanics using confocal microscopy
    Kennedy, Zeke
    Newberg, Joshua
    Goelzer, Matthew
    Judex, Stefan
    Fitzpatrick, Clare K.
    Uzer, Gunes
    [J]. BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2021, 20 (06) : 2361 - 2372
  • [47] The method analysis of fiber-optic based on scanning confocal interference microscopy
    Zou, LM
    Ding, XM
    Geng, JH
    Li, JA
    [J]. PROCEEDINGS OF THE THIRD INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION SCIENCE AND TECHNOLOGY, VOL 2, 2004, : 942 - 946
  • [48] Influences of edges and steep slopes in 3D interference and confocal microscopy
    Xie, Weichang
    Hagemeier, Sebastian
    Woidt, Carsten
    Hillmer, Hartmut
    Lagmann, Peter
    [J]. OPTICAL MICRO- AND NANOMETROLOGY VI, 2016, 9890
  • [49] Crystallization kinetics of calcium oxalate hydrates studied by scanning confocal interference microscopy
    Grohe, Bernd
    Rogers, Kem A.
    Goldberg, Harvey A.
    Hunter, Graeme K.
    [J]. JOURNAL OF CRYSTAL GROWTH, 2006, 295 (02) : 148 - 157
  • [50] Use of a white light supercontinuum laser for confocal interference-reflection microscopy
    Chiu, L. -D.
    Su, L.
    Reichelt, S.
    Amos, W. B.
    [J]. JOURNAL OF MICROSCOPY, 2012, 246 (02) : 153 - 159