New type of solutions for the modified Korteweg-de Vries equation

被引:0
|
作者
Liu, Xing-yu [1 ,2 ]
Lu, Bin-he [3 ]
Zhang, Da-jun [1 ,2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Newtouch Ctr Math, Shanghai 200444, Peoples R China
[3] Shanghai Univ, Qianweichang Coll, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Modified Korteweg-de Vries equation; Trigonometric function; Soliton solution; Bilinear form; BACKLUND-TRANSFORMATIONS;
D O I
10.1016/j.aml.2024.109288
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this letter we report a new type of multi-soliton solutions for the modified Korteweg-de Vries (mKdV) equation. These solutions contain a functions of the trigonometric solitons and classical solitons simultaneously. A new bilinear form of the mKdV equation is introduced to derive these solutions. The obtained solutions display as solitons living on a periodic background, which are analyzed and illustrated.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] KORTEWEG-DE VRIES EQUATION
    SHABAT, AB
    DOKLADY AKADEMII NAUK SSSR, 1973, 211 (06): : 1310 - 1313
  • [32] Soliton solutions and quasiperiodic solutions of modified Korteweg-de Vries type equations
    Geng, Xianguo
    Xue, Bo
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (06)
  • [33] KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    PROCEEDINGS OF THE JAPAN ACADEMY, 1975, 51 (06): : 399 - 401
  • [34] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Chaohua Jia
    Bing-Yu Zhang
    Acta Applicandae Mathematicae, 2012, 118 : 25 - 47
  • [35] H1 solutions for a modified Korteweg-de Vries-Burgers type equation
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    NETWORKS AND HETEROGENEOUS MEDIA, 2024, 19 (02) : 724 - 739
  • [36] Numerical simulation of the modified Korteweg-de Vries equation
    Biswas, A.
    Raslan, K. R.
    PHYSICS OF WAVE PHENOMENA, 2011, 19 (02) : 142 - 147
  • [37] Numerical simulation of the modified Korteweg-de Vries equation
    A. Biswas
    K. R. Raslan
    Physics of Wave Phenomena, 2011, 19 : 142 - 147
  • [38] A small time solutions for the Korteweg-de Vries equation
    Kutluay, S
    Bahadir, AR
    Özdes, A
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 107 (2-3) : 203 - 210
  • [39] On the Absence of Global Solutions of the Korteweg-de Vries Equation
    Pohozaev S.I.
    Journal of Mathematical Sciences, 2013, 190 (1) : 147 - 156
  • [40] A new combined soliton solution of the modified Korteweg-de Vries equation
    Wu, Jianping
    PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):