The Stability of Robustness for Conic Linear Programs with Uncertain Data

被引:0
|
作者
Goberna, Miguel A. [1 ]
Jeyakumar, Vaithilingam [2 ]
Li, Guoyin [2 ]
机构
[1] Univ Alicante, Dept Math, Alicante 03080, Spain
[2] Univ New South Wales, Dept Appl Math, Sydney 2052, Australia
基金
澳大利亚研究理事会;
关键词
Linear conic programs; Robust optimization; Parametric optimization; Stability;
D O I
10.1007/s10957-024-02492-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The robust counterpart of a given conic linear program with uncertain data in the constraints is defined as the robust conic linear program that arises from replacing the nominal feasible set by the robust feasible set of points that remain feasible for any possible perturbation of the data within an uncertainty set. Any minor changes in the size of the uncertainty set can result in significant changes, for instance, in the robust feasible set, robust optimal value and the robust optimal set. The concept of quantifying the extent of these deviations is referred to as the stability of robustness. This paper establishes conditions for the stability of robustness under which minor changes in the size of the uncertainty sets lead to only minor changes in the robust feasible set of a given linear program with cone constraints and ball uncertainty sets.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] ON MEASURES OF STABILITY ROBUSTNESS FOR LINEAR UNCERTAIN SYSTEMS
    YEDAVALLI, RK
    [J]. ROBUSTNESS IN IDENTIFICATION AND CONTROL, 1989, : 303 - 310
  • [2] Stability and Sensitivity of Uncertain Linear Programs
    Canovas, Maria J.
    Parra, Juan
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2022, 30 (04) : 1403 - 1421
  • [3] Stability and Sensitivity of Uncertain Linear Programs
    María J. Cánovas
    Juan Parra
    [J]. Set-Valued and Variational Analysis, 2022, 30 (4) : 1403 - 1421
  • [4] Calculating Radius of Robust Feasibility of Uncertain Linear Conic Programs via Semi-definite Programs
    M. A. Goberna
    V. Jeyakumar
    G. Li
    [J]. Journal of Optimization Theory and Applications, 2021, 189 : 597 - 622
  • [5] Calculating Radius of Robust Feasibility of Uncertain Linear Conic Programs via Semi-definite Programs
    Goberna, M. A.
    Jeyakumar, V.
    Li, G.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 189 (02) : 597 - 622
  • [6] Robustness of Solutions of the Inverse Problem for Linear Dynamical Systems with Uncertain Data
    Stanhope, S.
    Rubin, J. E.
    Swigon, D.
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 572 - 597
  • [7] Inverse conic linear programs in Banach spaces
    Archis Ghate
    [J]. Optimization Letters, 2021, 15 : 289 - 310
  • [8] Inverse conic linear programs in Banach spaces
    Ghate, Archis
    [J]. OPTIMIZATION LETTERS, 2021, 15 (02) : 289 - 310
  • [9] On linear conic relaxation of discrete quadratic programs
    Nie, Tiantian
    Fang, Shu-Cherng
    Deng, Zhibin
    Lavery, John E.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (04): : 737 - 754
  • [10] FLIGHT CONTROL APPLICATION OF NEW STABILITY ROBUSTNESS BOUNDS FOR LINEAR UNCERTAIN SYSTEMS
    YEDAVALLI, RK
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1993, 16 (06) : 1032 - 1037