Machine learning-based nomogram for distinguishing between supratentorial extraventricular ependymoma and supratentorial glioblastoma

被引:0
|
作者
Chen, Ling [1 ]
Chen, Weijiao [1 ]
Tang, Chuyun [2 ]
Li, Yao [3 ]
Wu, Min [1 ]
Tang, Lifang [1 ]
Huang, Lizhao [1 ]
Li, Rui [4 ]
Li, Tao [1 ]
机构
[1] Liuzhou Workers Hosp, Dept Radiol, Liuzhou, Guangxi, Peoples R China
[2] Guangxi Med Univ, Dept Radiol, Affiliated Hosp 1, Nanning, Guangxi, Peoples R China
[3] Liuzhou Workers Hosp, Dept Neurosurg, Liuzhou, Guangxi, Peoples R China
[4] Guangxi Med Univ, Dept Radiol, Affiliated Hosp 4, Liuzhou, Peoples R China
来源
FRONTIERS IN ONCOLOGY | 2024年 / 14卷
关键词
machine learning; nomogram; glioblastoma; ependymoma; magnetic resonance imaging; DIAGNOSIS;
D O I
10.3389/fonc.2024.1443913
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Objective To develop a machine learning-based nomogram for distinguishing between supratentorial extraventricular ependymoma (STEE) and supratentorial glioblastoma (GBM).Methods We conducted a retrospective analysis on MRI datasets obtained from 140 patients who were diagnosed with STEE (n=48) and GBM (n=92) from two institutions. Initially, we compared seven different machine learning algorithms to determine the most suitable signature (rad-score). Subsequently, univariate and multivariate logistic regression analyses were performed to identify significant clinical predictors that can differentiate between STEE and GBM. Finally, we developed a nomogram by visualizing the rad-score and clinical features for clinical evaluation.Results The TreeBagger (TB) outperformed the other six algorithms, yielding the best diagnostic efficacy in differentiating STEE from GBM, with area under the curve (AUC) values of 0.735 (95% CI: 0.625-0.845) and 0.796 (95% CI: 0.644-0.949) in the training set and test set. Furthermore, the nomogram incorporating both the rad-score and clinical variables demonstrated a robust predictive performance with an accuracy of 0.787 in the training set and 0.832 in the test set.Conclusion The nomogram could serve as a valuable tool for non-invasively discriminating between STEE and GBM.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Supratentorial extraventricular WHO grade III (anaplastic) ependymoma 17 years after total removal of WHO grade II ependymoma of the fourth ventricle
    Takeda, Naoya
    Nishihara, Masamitsu
    Harada, Tomoaki
    Kidoguchi, Keiji
    Hashimoto, Kimio
    BRITISH JOURNAL OF NEUROSURGERY, 2017, 31 (02) : 270 - 272
  • [22] The role of clinical factors and immunocheckpoint molecules in the prognosis of patients with supratentorial extraventricular ependymoma: a single-center retrospective study
    Wang, Liguo
    Han, Song
    Yan, Changxiang
    Yang, Yakun
    Li, Zhiqiang
    Yang, Zuocheng
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2021, 147 (04) : 1259 - 1270
  • [23] The role of clinical factors and immunocheckpoint molecules in the prognosis of patients with supratentorial extraventricular ependymoma: a single-center retrospective study
    Liguo Wang
    Song Han
    Changxiang Yan
    Yakun Yang
    Zhiqiang Li
    Zuocheng Yang
    Journal of Cancer Research and Clinical Oncology, 2021, 147 : 1259 - 1270
  • [24] Nomogram incorporating preoperative MRI-VASARI features for differentiating intracranial extraventricular ependymoma from glioblastoma
    Yao, Yao
    Fu, Yan
    Zhou, Gaofeng
    Wang, Xueying
    Li, Liyan
    Mao, Yipu
    Wang, Jing
    Tan, Zeming
    Jiang, Muliang
    Yi, Xiaoping
    Chen, Bihong T.
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (03) : 2255 - 2268
  • [25] Machine learning-based assessment of intratumor heterogeneity in glioblastoma
    Hieber, D.
    Prokop, G.
    Karthan, M.
    Maerkl, B.
    Schlegel, J.
    Pryss, R.
    Grambow, G.
    Schobel, J.
    Liesche-Starnecker, F.
    BRAIN PATHOLOGY, 2023, 33
  • [26] Machine learning-based prognostic subgrouping of glioblastoma: A multicenter study
    Akbari, Hamed
    Bakas, Spyridon
    Sako, Chiharu
    Kazerooni, Anahita Fathi
    Villanueva-Meyer, Javier
    Garcia, Jose A.
    Mamourian, Elizabeth
    Liu, Fang
    Cao, Quy
    Shinohara, Russell T.
    Baid, Ujjwal
    Getka, Alexander
    Pati, Sarthak
    Singh, Ashish
    Calabrese, Evan
    Chang, Susan
    Rudie, Jeffrey
    Sotiras, Aristeidis
    LaMontagne, Pamela
    Marcus, Daniel S.
    Milchenko, Mikhail
    Nazeri, Arash
    Balana, Carmen
    Capellades, Jaume
    Puig, Josep
    Badve, Chaitra
    Barnholtz-Sloan, Jill S.
    Sloan, Andrew E.
    Vadmal, Vachan
    Waite, Kristin
    Ak, Murat
    Colen, Rivka R.
    Park, Yae Won
    Ahn, Sung Soo
    Chang, Jong Hee
    Choi, Yoon Seong
    Lee, Seung-Koo
    Alexander, Gregory S.
    Ali, Ayesha S.
    Dicker, Adam P.
    Flanders, Adam E.
    Liem, Spencer
    Lombardo, Joseph
    Shi, Wenyin
    Shukla, Gaurav
    Griffith, Brent
    Poisson, Laila M.
    Rogers, Lisa R.
    Kotrotsou, Aikaterini
    Booth, Thomas C.
    NEURO-ONCOLOGY, 2025,
  • [27] Development and Validation of a Machine Learning-Based Nomogram for Prediction of Ankylosing Spondylitis
    Zhu, Jichong
    Lu, Qing
    Liang, Tuo
    Jiang, Jie
    Li, Hao
    Zhou, Chenxin
    Wu, Shaofeng
    Chen, Tianyou
    Chen, Jiarui
    Deng, Guobing
    Yao, Yuanlin
    Liao, Shian
    Yu, Chaojie
    Huang, Shengsheng
    Sun, Xuhua
    Chen, Liyi
    Chen, Wenkang
    Ye, Zhen
    Guo, Hao
    Chen, Wuhua
    Jiang, Wenyong
    Fan, Binguang
    Tao, Xiang
    Zhan, Xinli
    Liu, Chong
    RHEUMATOLOGY AND THERAPY, 2022, 9 (05) : 1377 - 1397
  • [28] Development and Validation of a Machine Learning-Based Nomogram for Prediction of Ankylosing Spondylitis
    Jichong Zhu
    Qing Lu
    Tuo Liang
    Hao JieJiang
    Chenxin Li
    Shaofeng Zhou
    Tianyou Wu
    Jiarui Chen
    Guobing Chen
    Yuanlin Deng
    Shian Yao
    Chaojie Liao
    Shengsheng Yu
    Xuhua Huang
    Liyi Sun
    Wenkang Chen
    Zhen Chen
    Hao Ye
    Wuhua Guo
    Wenyong Chen
    Binguang Jiang
    Xiang Fan
    Xinli Tao
    Chong Zhan
    Rheumatology and Therapy, 2022, 9 : 1377 - 1397
  • [29] A machine learning-based nomogram model for predicting the recurrence of cystitis glandularis
    Liu, Xuhao
    Wang, Yuhang
    Wang, Yinzhao
    Dao, Pinghong
    Zhou, Tailai
    Zhu, Wenhao
    Huang, Chuyang
    Li, Yong
    Yan, Yuzhong
    Chen, Minfeng
    THERAPEUTIC ADVANCES IN UROLOGY, 2024, 16
  • [30] Distinguishing among standing postures with machine learning-based classification algorithms
    Rahimi, Negar
    Kamankesh, Alireza
    Amiridis, Ioannis G.
    Daneshgar, Sajjad
    Sahinis, Chrysostomos
    Hatzitaki, Vassilia
    Enoka, Roger M.
    EXPERIMENTAL BRAIN RESEARCH, 2025, 243 (01)