RM-UNet: UNet-like Mamba with rotational SSM module for medical image segmentation

被引:0
|
作者
Tang, Hao [1 ]
Huang, Guoheng [1 ]
Cheng, Lianglun [1 ]
Yuan, Xiaochen [2 ]
Tao, Qi [3 ]
Chen, Xuhang [4 ]
Zhong, Guo [5 ]
Yang, Xiaohui [6 ]
机构
[1] Guangdong Univ Technol, Sch Comp Sci & Technol, Guangzhou 510006, Peoples R China
[2] Macao Polytech Univ, Fac Appl Sci, Macau 999078, Peoples R China
[3] Guangdong Technion Israel Inst Technol, Dept Mech Engn Robot, Shantou 515063, Peoples R China
[4] Huizhou Univ, Sch Comp Sci & Engn, Huizhou 516007, Peoples R China
[5] Guangdong Univ Foreign Studies, Sch Informat Sci & Technol, Guangzhou 510006, Peoples R China
[6] Sun Yat sen Univ, Affiliated Hosp 3, Dept Gynecol, Guangzhou, Peoples R China
关键词
U-Net; State Space Models; Medical image segmentation; Mamba; LSIL; U-NET ARCHITECTURE;
D O I
10.1007/s11760-024-03484-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate segmentation of tissues and lesions is crucial for disease diagnosis, treatment planning, and surgical navigation. Yet, the complexity of medical images presents significant challenges for traditional Convolutional Neural Networks and Transformer models due to their limited receptive fields or high computational complexity. State Space Models (SSMs) have recently shown notable vision performance, particularly Mamba and its variants. However, their feature extraction methods may not be sufficiently effective and retain some redundant structures, leaving room for parameter reduction. In response to these challenges, we introduce a methodology called Rotational Mamba-UNet, characterized by Residual Visual State Space (ResVSS) block and Rotational SSM Module. The ResVSS block is devised to mitigate network degradation caused by the diminishing efficacy of information transfer from shallower to deeper layers. Meanwhile, the Rotational SSM Module is devised to tackle the challenges associated with channel feature extraction within State Space Models. Finally, we propose a weighted multi-level loss function, which fully leverages the outputs of the decoder's three stages for supervision. We conducted experiments on ISIC17, ISIC18, CVC-300, Kvasir-SEG, CVC-ColonDB, Kvasir-Instrument datasets, and Low-grade Squamous Intraepithelial Lesion datasets provided by The Third Affiliated Hospital of Sun Yat-sen University, demonstrating the superior segmentation performance of our proposed RM-UNet. Additionally, compared to the previous VM-UNet, our model achieves a one-third reduction in parameters. Our code is available at https://github.com/Halo2Tang/RM-UNet.
引用
收藏
页码:8427 / 8443
页数:17
相关论文
共 50 条
  • [21] SMESwin Unet: Merging CNN and Transformer for Medical Image Segmentation
    Wang, Ziheng
    Min, Xiongkuo
    Shi, Fangyu
    Jin, Ruinian
    Nawrin, Saida S.
    Yu, Ichen
    Nagatomi, Ryoichi
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT V, 2022, 13435 : 517 - 526
  • [22] Light-UNet: An Efficient Segmentation Network for Medical Image
    Zhang, Yue
    Xu, Chao
    Zhang, Zhifan
    Wang, Jianjun
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT VI, ICIC 2024, 2024, 14867 : 302 - 313
  • [23] Semantic Segmentation in Medical Image Based on Hybrid Dlinknet and Unet
    Samudrala, Suresh
    Mohan, C. Krishna
    3rd IEEE 2022 International Conference on Computing, Communication, and Intelligent Systems, ICCCIS 2022, 2022, : 42 - 47
  • [24] EPolar-UNet: An edge-attending polar UNet for automatic medical image segmentation with small datasets
    Ling, Yating
    Wang, Yuling
    Liu, Qian
    Yu, Jie
    Xu, Lei
    Zhang, Xiaoqian
    Liang, Ping
    Kong, Dexing
    MEDICAL PHYSICS, 2024, 51 (03) : 1702 - 1713
  • [25] Retinal Vascular Image Segmentation Using Improved UNet Based on Residual Module
    Huang, Ko-Wei
    Yang, Yao-Ren
    Huang, Zih-Hao
    Liu, Yi-Yang
    Lee, Shih-Hsiung
    BIOENGINEERING-BASEL, 2023, 10 (06):
  • [26] Cascade Residual Multiscale Convolution and Mamba-Structured UNet for Advanced Brain Tumor Image Segmentation
    Zhou, Rui
    Wang, Ju
    Xia, Guijiang
    Xing, Jingyang
    Shen, Hongming
    Shen, Xiaoyan
    ENTROPY, 2024, 26 (05)
  • [27] LIT-Unet: a lightweight and effective model for medical image segmentation
    Wang, Ru
    Kou, Qiqi
    Dou, Lina
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2024, : 878 - 887
  • [28] NAS-Unet: Neural Architecture Search for Medical Image Segmentation
    Weng, Yu
    Zhou, Tianbao
    Li, Yujie
    Qiu, Xiaoyu
    IEEE ACCESS, 2019, 7 : 44247 - 44257
  • [29] DMSA-UNet: Dual Multi-Scale Attention makes UNet more strong for medical image segmentation
    Li, Xiang
    Fu, Chong
    Wang, Qun
    Zhang, Wenchao
    Sham, Chiu-Wing
    Chen, Junxin
    KNOWLEDGE-BASED SYSTEMS, 2024, 299
  • [30] MA-Unet:An improved version of Unet based on multi-scale and attention mechanism for medical image segmentation
    Cai, Yutong
    Wang, Yong
    THIRD INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION; NETWORK AND COMPUTER TECHNOLOGY (ECNCT 2021), 2022, 12167