A Systematic Survey of Transformer-Based 3D Object Detection for Autonomous Driving: Methods, Challenges and Trends

被引:0
|
作者
Zhu, Minling [1 ]
Gong, Yadong [1 ]
Tian, Chunwei [2 ,3 ]
Zhu, Zuyuan [4 ]
机构
[1] Beijing Informat Sci & Technol Univ, Comp Sch, Beijing 100101, Peoples R China
[2] Northwestern Polytech Univ, Sch Software, Xian 710129, Peoples R China
[3] Northwestern Polytech Univ, Yangtze River Delta Res Inst, Taicang 215400, Peoples R China
[4] City Univ London, Dept Elect & Elect Engn, London EC1V 0HB, England
关键词
3D object detection; autonomous driving; transformer; survey;
D O I
10.3390/drones8080412
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In recent years, with the continuous development of autonomous driving technology, 3D object detection has naturally become a key focus in the research of perception systems for autonomous driving. As the most crucial component of these systems, 3D object detection has gained significant attention. Researchers increasingly favor the deep learning framework Transformer due to its powerful long-term modeling ability and excellent feature fusion advantages. A large number of excellent Transformer-based 3D object detection methods have emerged. This article divides the methods based on data sources. Firstly, we analyze different input data sources and list standard datasets and evaluation metrics. Secondly, we introduce methods based on different input data and summarize the performance of some methods on different datasets. Finally, we summarize the limitations of current research, discuss future directions and provide some innovative perspectives.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Exploring Diversity-Based Active Learning for 3D Object Detection in Autonomous Driving
    Lin, Jinpeng
    Liang, Zhihao
    Deng, Shengheng
    Cai, Lile
    Jiang, Tao
    Li, Tianrui
    Jia, Kui
    Xu, Xun
    IEEE Transactions on Intelligent Transportation Systems, 2024, 25 (11) : 15454 - 15466
  • [42] TEMPORAL AXIAL ATTENTION FOR LIDAR-BASED 3D OBJECT DETECTION IN AUTONOMOUS DRIVING
    Carranza-Garcia, Manuel
    Riquelme, Jose C.
    Zakhor, Avideh
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 201 - 205
  • [43] SPADE: Sparse Pillar-based 3D Object Detection Accelerator for Autonomous Driving
    Lee, Minjae
    Park, Seongmin
    Kim, Hyungmin
    Yoon, Minyong
    Lee, Janghwan
    Choi, Jun Won
    Kim, Nam Sung
    Kang, Mingu
    Choi, Jungwook
    2024 IEEE INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE COMPUTER ARCHITECTURE, HPCA 2024, 2024, : 454 - 467
  • [44] GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving
    Li, Buyu
    Ouyang, Wanli
    Sheng, Lu
    Zeng, Xingyu
    Wang, Xiaogang
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1019 - 1028
  • [45] POAT-Net: Parallel Offset-Attention Assisted Transformer for 3D Object Detection for Autonomous Driving
    Wang, Jinyang
    Lin, Xiao
    Yu, Hongying
    IEEE ACCESS, 2021, 9 : 151110 - 151117
  • [46] Research on 3D Point Cloud Object Detection Algorithm for Autonomous Driving
    Jiang, Haiyang
    Lu, Yuanyao
    Chen, Shengnan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [47] About the Ambiguity of Data Augmentation for 3D Object Detection in Autonomous Driving
    Reuse, Matthias
    Simon, Martin
    Sick, Bernhard
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 979 - 987
  • [48] Efficient Uncertainty Estimation for Monocular 3D Object Detection in Autonomous Driving
    Liu, Zechen
    Han, Zhihua
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 2711 - 2718
  • [49] Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving
    Chen, Yi-Nan
    Dai, Hang
    Ding, Yong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 877 - 887
  • [50] Efficient 3D Object Detection Models and Evaluation Method for Autonomous Driving
    Lee, Jin-Hee
    Lee, Jae-Keun
    Lee, Joohyun
    Kim, Je-Seok
    Kwon, Soon
    2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,