A Systematic Survey of Transformer-Based 3D Object Detection for Autonomous Driving: Methods, Challenges and Trends

被引:0
|
作者
Zhu, Minling [1 ]
Gong, Yadong [1 ]
Tian, Chunwei [2 ,3 ]
Zhu, Zuyuan [4 ]
机构
[1] Beijing Informat Sci & Technol Univ, Comp Sch, Beijing 100101, Peoples R China
[2] Northwestern Polytech Univ, Sch Software, Xian 710129, Peoples R China
[3] Northwestern Polytech Univ, Yangtze River Delta Res Inst, Taicang 215400, Peoples R China
[4] City Univ London, Dept Elect & Elect Engn, London EC1V 0HB, England
关键词
3D object detection; autonomous driving; transformer; survey;
D O I
10.3390/drones8080412
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In recent years, with the continuous development of autonomous driving technology, 3D object detection has naturally become a key focus in the research of perception systems for autonomous driving. As the most crucial component of these systems, 3D object detection has gained significant attention. Researchers increasingly favor the deep learning framework Transformer due to its powerful long-term modeling ability and excellent feature fusion advantages. A large number of excellent Transformer-based 3D object detection methods have emerged. This article divides the methods based on data sources. Firstly, we analyze different input data sources and list standard datasets and evaluation metrics. Secondly, we introduce methods based on different input data and summarize the performance of some methods on different datasets. Finally, we summarize the limitations of current research, discuss future directions and provide some innovative perspectives.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Transformer-Based Optimized Multimodal Fusion for 3D Object Detection in Autonomous Driving
    Alaba, Simegnew Yihunie
    Ball, John E.
    IEEE ACCESS, 2024, 12 : 50165 - 50176
  • [2] A Survey on 3D Object Detection Methods for Autonomous Driving Applications
    Arnold, Eduardo
    Al-Jarrah, Omar Y.
    Dianati, Mehrdad
    Fallah, Saber
    Oxtoby, David
    Mouzakitis, Alex
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2019, 20 (10) : 3782 - 3795
  • [3] 3D Object Detection for Autonomous Driving: A Survey
    Qian, Rui
    Lai, Xin
    Li, Xirong
    PATTERN RECOGNITION, 2022, 130
  • [4] Monocular 3D Object Detection for Autonomous Driving Based on Contextual Transformer
    She, Xiangyang
    Yan, Weijia
    Dong, Lihong
    Computer Engineering and Applications, 2024, 60 (19) : 178 - 189
  • [5] 3D object detection for autonomous driving: Methods, models, sensors, data, and challenges
    Ghasemieh A.
    Kashef R.
    Transportation Engineering, 2022, 8
  • [6] Performance and Challenges of 3D Object Detection Methods in Complex Scenes for Autonomous Driving
    Wang, Ke
    Zhou, Tianqiang
    Li, Xingcan
    Ren, Fan
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (02): : 1699 - 1716
  • [7] 3D Object Detection for Autonomous Driving: A Practical Survey
    Ramajo-Ballester, Alvaro
    de la Escalera Hueso, Arturo
    Armingol Moreno, Jose Maria
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON VEHICLE TECHNOLOGY AND INTELLIGENT TRANSPORT SYSTEMS, VEHITS 2023, 2023, : 64 - 73
  • [8] 3D Object Detection for Autonomous Driving: A Comprehensive Survey
    Jiageng Mao
    Shaoshuai Shi
    Xiaogang Wang
    Hongsheng Li
    International Journal of Computer Vision, 2023, 131 : 1909 - 1963
  • [9] 3D Object Detection for Autonomous Driving: A Comprehensive Survey
    Mao, Jiageng
    Shi, Shaoshuai
    Wang, Xiaogang
    Li, Hongsheng
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (08) : 1909 - 1963
  • [10] 3D Object Detection From Images for Autonomous Driving: A Survey
    Ma, Xinzhu
    Ouyang, Wanli
    Simonelli, Andrea
    Ricci, Elisa
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (05) : 3537 - 3556