Deep learning-based segmentation of subcellular organelles in high-resolution phase-contrast images

被引:0
|
作者
Shimasaki, Kentaro [1 ]
Okemoto-Nakamura, Yuko [1 ]
Saito, Kyoko [1 ]
Fukasawa, Masayoshi [1 ]
Katoh, Kaoru [2 ,3 ]
Hanada, Kentaro [4 ]
机构
[1] Natl Inst Infect Dis, Dept Biochem & Cell Biol, Toyama 1-23-1,Shinjuku Ku, Tokyo 1628640, Japan
[2] Natl Inst Adv Ind Sci & Technol, Biomed Res Inst, Tsukuba, Ibaragi 3058566, Japan
[3] Natl Inst Adv Ind Sci & Technol, AIRC, Koto Ku, Tokyo 1350064, Japan
[4] Natl Inst Infect Dis, Ctr Qual Management Syst, 1-23-1 Toyama,Shinjuku Ku, Tokyo 1628640, Japan
关键词
label-free imaging; organelle dynamics; apodized phase contrast; deep learning-based segmentation;
D O I
10.1247/csf.24036
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Although quantitative analysis of biological images demands precise extraction of specific organelles or cells, it remains challenging in broad-field grayscale images, where traditional thresholding methods have been hampered due to complex image features. Nevertheless, rapidly growing artificial intelligence technology is overcoming obstacles. We previously reported the fine-tuned apodized phase-contrast microscopy system to capture highresolution, label-free images of organelle dynamics in unstained living cells (Shimasaki, K. et al. (2024). Cell Struct. Funct., 49: 21-29). We here showed machine learning-based segmentation models for subcellular targeted objects in phase-contrast images using fluorescent markers as origins of ground truth masks. This method enables accurate segmentation of organelles in high-resolution phase-contrast images, providing a practical framework for studying cellular dynamics in unstained living cells.
引用
收藏
页码:57 / 65
页数:9
相关论文
共 50 条
  • [41] High-Resolution X-Ray Phase-Contrast Imaging with a Grating Interferometer
    Lee, Seung Wook
    Kim, Youngju
    Lee, Seho
    Oh, Ohsung
    Xi, Yan
    Yang, Qingsong
    Cong, Wenxiang
    Wang, Ge
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2017, 71 (09) : 538 - 542
  • [42] PHASE-CONTRAST OF TUNGSTEN SUPPORT FILMS FOR HIGH-RESOLUTION ELECTRON-MICROSCOPY
    KANAYA, K
    OIKAWA, T
    HOJOU, K
    ONO, S
    WATANABE, E
    ADACHI, K
    MICRON, 1977, 8 (1-2) : 63 - 76
  • [43] High-resolution X-ray phase-contrast imaging with a grating interferometer
    Seung Wook Lee
    Youngju Kim
    Seho Lee
    Ohsung Oh
    Yan Xi
    Qingsong Yang
    Wenxiang Cong
    Ge Wang
    Journal of the Korean Physical Society, 2017, 71 : 538 - 542
  • [44] Rapid automatic segmentation of fluorescent and phase-contrast images of bacteria
    Wilkinson, MHF
    FLUORESCENCE MICROSCOPY AND FLUORESCENT PROBES, 1996, : 261 - 266
  • [45] High-Resolution Phase-Contrast Imaging of Submicron Particles in Unstained Lung Tissue
    Schittny, J. C.
    Barre, S. F.
    Mokso, R.
    Haberthuer, D.
    Semmler-Behnke, M.
    Kreyling, W. G.
    Tsuda, A.
    Stampanoni, M.
    10TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY, 2011, 1365 : 384 - 387
  • [46] Deep Reinforcement Learning-Based Progressive Sequence Saliency Discovery Network for Mitosis Detection In Time-Lapse Phase-Contrast Microscopy Images
    Su, Yu-Ting
    Lu, Yao
    Chen, Mei
    Liu, An-An
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (02) : 854 - 865
  • [47] Deep Learning Semantic Segmentation for High-Resolution Medical Volumes
    Toubal, Imad Eddine
    Duan, Ye
    Yang, Deshan
    2020 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR): TRUSTED COMPUTING, PRIVACY, AND SECURING MULTIMEDIA, 2020,
  • [48] Road Segmentation in High-Resolution Images Using Deep Residual Networks
    Patil, Dhanashri
    Jadhav, Sangeeta
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2022, 12 (06) : 9654 - 9660
  • [49] Semantic segmentation of high-resolution images
    Wang, Juhong
    Liu, Bin
    Xu, Kun
    SCIENCE CHINA-INFORMATION SCIENCES, 2017, 60 (12) : 123101:1 - 123101:6
  • [50] Semantic segmentation of high-resolution images
    Juhong WANG
    Bin LIU
    Kun XU
    Science China(Information Sciences), 2017, 60 (12) : 256 - 261