Deep learning-based segmentation of subcellular organelles in high-resolution phase-contrast images

被引:0
|
作者
Shimasaki, Kentaro [1 ]
Okemoto-Nakamura, Yuko [1 ]
Saito, Kyoko [1 ]
Fukasawa, Masayoshi [1 ]
Katoh, Kaoru [2 ,3 ]
Hanada, Kentaro [4 ]
机构
[1] Natl Inst Infect Dis, Dept Biochem & Cell Biol, Toyama 1-23-1,Shinjuku Ku, Tokyo 1628640, Japan
[2] Natl Inst Adv Ind Sci & Technol, Biomed Res Inst, Tsukuba, Ibaragi 3058566, Japan
[3] Natl Inst Adv Ind Sci & Technol, AIRC, Koto Ku, Tokyo 1350064, Japan
[4] Natl Inst Infect Dis, Ctr Qual Management Syst, 1-23-1 Toyama,Shinjuku Ku, Tokyo 1628640, Japan
关键词
label-free imaging; organelle dynamics; apodized phase contrast; deep learning-based segmentation;
D O I
10.1247/csf.24036
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Although quantitative analysis of biological images demands precise extraction of specific organelles or cells, it remains challenging in broad-field grayscale images, where traditional thresholding methods have been hampered due to complex image features. Nevertheless, rapidly growing artificial intelligence technology is overcoming obstacles. We previously reported the fine-tuned apodized phase-contrast microscopy system to capture highresolution, label-free images of organelle dynamics in unstained living cells (Shimasaki, K. et al. (2024). Cell Struct. Funct., 49: 21-29). We here showed machine learning-based segmentation models for subcellular targeted objects in phase-contrast images using fluorescent markers as origins of ground truth masks. This method enables accurate segmentation of organelles in high-resolution phase-contrast images, providing a practical framework for studying cellular dynamics in unstained living cells.
引用
收藏
页码:57 / 65
页数:9
相关论文
共 50 条
  • [1] High-resolution cell outline segmentation and tracking from phase-contrast microscopy images
    Ambuehl, M. E.
    Brepsant, C.
    Meister, J. -J.
    Verkhovsky, A. B.
    Sbalzarini, I. F.
    JOURNAL OF MICROSCOPY, 2012, 245 (02) : 161 - 170
  • [2] Mapping Cones on Mars in High-Resolution Planetary Images with Deep Learning-Based Instance Segmentation
    Yang, Chen
    Zhang, Nan
    Guan, Renchu
    Zhao, Haishi
    REMOTE SENSING, 2024, 16 (02)
  • [3] Deep Learning-Based Segmentation of Mineralized Cartilage and Bone in High-Resolution Micro-CT Images
    Leger, Jean
    Leyssens, Lisa
    De Vleeschouwer, Christophe
    Kerckhofs, Greet
    COMPUTER METHODS, IMAGING AND VISUALIZATION IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2020, 36 : 158 - 170
  • [4] Untrained deep learning-based differential phase-contrast microscopy
    Seong, Baekcheon
    Kim, Ingyoung
    Moon, Taegyun
    Ranathunga, Malith
    Kim, Daesuk
    Joo, Chulmin
    OPTICS LETTERS, 2023, 48 (13) : 3607 - 3610
  • [5] Deep Learning based Segmentation Pipeline for Label-Free Phase-Contrast Microscopy Images
    Ayanzadeh, Aydin
    Ozuysal, Ozden Yalcin
    Okvur, Devrim Pesen
    Onal, Sevgi
    Toreyin, Behcet Ugur
    Unay, Devrim
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [6] Deep Learning Segmentation of Complex Features in Atomic-Resolution Phase-Contrast Transmission Electron Microscopy Images
    Sadre, Robbie
    Ophus, Colin
    Butko, Anastasiia
    Weber, Gunther H.
    MICROSCOPY AND MICROANALYSIS, 2021, 27 (04) : 804 - 814
  • [7] Deep Learning-Based Classification of High-Resolution Satellite Images for Mangrove Mapping
    Wei, Yidi
    Cheng, Yongcun
    Yin, Xiaobin
    Xu, Qing
    Ke, Jiangchen
    Li, Xueding
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [8] Semantic segmentation of high-resolution satellite images using deep learning
    Chaurasia, Kuldeep
    Nandy, Rijul
    Pawar, Omkar
    Singh, Ravi Ranjan
    Ahire, Meghana
    EARTH SCIENCE INFORMATICS, 2021, 14 (04) : 2161 - 2170
  • [9] Semantic segmentation of high-resolution satellite images using deep learning
    Kuldeep Chaurasia
    Rijul Nandy
    Omkar Pawar
    Ravi Ranjan Singh
    Meghana Ahire
    Earth Science Informatics, 2021, 14 : 2161 - 2170
  • [10] DEEP LEARNING-BASED STEREO MATCHING FOR HIGH-RESOLUTION SATELLITE IMAGES: A COMPARATIVE EVALUATION
    He, X.
    Jiang, S.
    He, S.
    Li, Q.
    Jiang, W.
    Wang, L.
    GEOSPATIAL WEEK 2023, VOL. 48-1, 2023, : 1635 - 1642