Elevated CO2 concentration enhance carbon and nitrogen metabolism and biomass accumulation of Ormosia hosiei

被引:4
|
作者
Wei, Yi [1 ]
Wang, Mingbin [1 ]
Wang, Man [1 ]
Yu, Dalong [1 ]
Wei, Xiaoli [1 ,2 ]
机构
[1] Guizhou Univ, Coll Forestry, Guiyang, Peoples R China
[2] Guizhou Univ, Inst Forest Resources & Environm Guizhou, Guiyang, Peoples R China
关键词
Photosynthesis; Carbon and nitrogen metabolism; Biomass allocation; ElevatedCO2; concentration; LIGHT-RESPONSE CURVES; GAS-EXCHANGE; LONG-TERM; PHOTOSYNTHESIS; ENRICHMENT; GROWTH; ECOSYSTEMS; NUTRIENT; PLANTS; TEMPERATURE;
D O I
10.1016/j.plaphy.2024.108725
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Elevated CO2 concentrations may inhibit photosynthesis due to nitrogen deficiency, but legumes may be able to overcome this limitation and continue to grow. Our study confirms this conjecture well. First, we placed the twoyear-old potted saplings of Ormosia hosiei ( O. hosiei ) (a leguminous tree species) in the open-top chamber (OTC) with three CO2 concentrations of 400 (CK), 600 (E1), and 800 mu mol & sdot;mol - 1 (E2) to simulate the elevated CO2 concentration environment. After 146 days, the light saturation point (LSP), light compensation point (LCP), apparent quantum efficiency (AQE), and dark respiration rate (Rd) of O. hosiei were increased under increasing CO2 concentration and obtain the maximum ribulose diphosphate (RuBP) carboxylation rate ( V-cmax ) and RuBP regenerated photosynthetic electron transfer rate ( J max ) were also significantly increased under E2 treatment ( P < 0.05). This results in a significant increase of the maximum assimilation rate ( A max ) under elevated CO2 concentrations. Sucrose phosphate synthase (SPS) activity in sucrose metabolism increased in the leaves, more soluble sugars, starches, and sucrose was produced, but sucrose content only in leaves increased at E2, and more carbon flows to the roots. The activity of the NH 4 + assimilating enzymes glutamine synthetase (GS), glutamate synthetase (GOGAT), and glutamate dehydrogenase (GDH) in the leaves of O. hosiei increases under elevated CO2 concentrations to promote nitrogen synthesis that reduces the content of ammonium nitrogen and increases the content of nitrate nitrogen. In addition, under E1 conditions, sucrose synthase (SS), direction of synthesis activity was highest and sucrose invertase (INV) activity was lowest, this means that the balance of C and N metabolism is maintained. While under E2 conditions SS activity decreased and INV activity increased, this increased C/N and nitrogen use efficiency. So, the elevated CO2 concentration promotes the accumulation of O. hosiei biomass, especially in the aboveground part, but did not have a significant effect on the accumulation of root biomass. This means that O. hosiei is able to cope under the elevated CO2 concentration without showing photosynthetic adaptation during the experimental period.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Impacts and uncertainty analysis of elevated temperature and CO2 concentration on wheat biomass
    Liu Yujie
    Tao Fulu
    JOURNAL OF GEOGRAPHICAL SCIENCES, 2012, 22 (06) : 1002 - 1012
  • [23] ELEVATED ATMOSPHERIC CO2 AND FEEDBACK BETWEEN CARBON AND NITROGEN CYCLES
    ZAK, DR
    PREGITZER, KS
    CURTIS, PS
    TEERI, JA
    FOGEL, R
    RANDLETT, DL
    PLANT AND SOIL, 1993, 151 (01) : 105 - 117
  • [24] Enhancement of rice canopy carbon gain by elevated CO2 is sensitive to growth stage and leaf nitrogen concentration
    Sakai, H
    Hasegawa, T
    Kobayashi, K
    NEW PHYTOLOGIST, 2006, 170 (02) : 321 - 332
  • [25] Acclimation of nitrogen uptake capacity of rice to elevated atmospheric CO2 concentration
    Shimono, Hiroyuki
    Bunce, James A.
    ANNALS OF BOTANY, 2009, 103 (01) : 87 - 94
  • [26] Biological nitrogen fixation maintains carbon/nitrogen balance and photosynthesis at elevated CO2
    Brooks, Matthew D.
    Szeto, Ronnia C.
    PLANT CELL AND ENVIRONMENT, 2024, 47 (06): : 2178 - 2191
  • [27] Carbon and nitrogen reserve remobilization following defoliation:: Nitrogen and elevated CO2 effects
    Skinner, RH
    Morgan, JA
    Hanson, JD
    CROP SCIENCE, 1999, 39 (06) : 1749 - 1756
  • [28] Elevated CO2 concentration, nitrogen use, and seed production in annual plants
    Miyagi, Kay-May
    Kinugasa, Toshihiko
    Hikosaka, Kouki
    Hirose, Tadaki
    GLOBAL CHANGE BIOLOGY, 2007, 13 (10) : 2161 - 2170
  • [29] Using CO2 to enhance carbon capture and biomass applications of freshwater macroalgae
    Cole, Andrew J.
    Mata, Leonardo
    Paul, Nicholas A.
    de Nys, Rocky
    GLOBAL CHANGE BIOLOGY BIOENERGY, 2014, 6 (06): : 637 - 645
  • [30] Accumulation of soil carbon under elevated CO2 unaffected by warming and drought
    Dietzen, Christiana A.
    Larsen, Klaus Steenberg
    Ambus, Per L.
    Michelsen, Anders
    Arndal, Marie Frost
    Beier, Claus
    Reinsch, Sabine
    Schmidt, Inger Kappel
    GLOBAL CHANGE BIOLOGY, 2019, 25 (09) : 2970 - 2977