Inverse design of mid-infrared diamond waveguide beam splitter

被引:1
|
作者
Li, Yihao [1 ]
Chen, Shu [1 ]
Yu, Yanan [1 ]
Li, Chen [1 ]
Xiao, Ting-Hui [1 ,2 ,3 ,4 ]
机构
[1] Zhengzhou Univ, Sch Phys, Lab Zhongyuan Light, Zhengzhou 450001, Peoples R China
[2] Zhengzhou Univ, Sch Phys, Key Lab Mat Phys, Minist Educ, Zhengzhou 450001, Peoples R China
[3] Henan Acad Sci, Inst Quantum Mat & Phys, Zhengzhou 450046, Peoples R China
[4] Univ Tokyo, Sch Sci, Dept Chem, Tokyo 1130033, Japan
关键词
SILICON;
D O I
10.1364/OL.526023
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Diamond is a supreme material for mid-infrared (MIR) integrated photonics as it has a transparency window up to 20 mu m that covers the entire fingerprint region. However, its relatively low refractive index poses a challenge in designing an MIR diamond functional device with both small footprint and high transmission efficiency. Here we propose and demonstrate the inverse design of an MIR diamond waveguide beam splitter operating at the wavelength of 15 mu m with a small footprint of- 15 mu m x- 15 mu m and a total transmission efficiency above 95%. Our work paves a new avenue for the design of compact and high-efficiency MIR diamond photonic devices. (c) 2024 Optica Publishing Group
引用
收藏
页码:3620 / 3623
页数:4
相关论文
共 50 条
  • [21] Demonstration of mid-infrared waveguide photonic crystal cavities
    Lin, Hongtao
    Li, Lan
    Deng, Fei
    Ni, Chaoying
    Danto, Sylvain
    Musgraves, J. David
    Richardson, Kathleen
    Hu, Juejun
    OPTICS LETTERS, 2013, 38 (15) : 2779 - 2782
  • [22] Waveguide Sensitivity Analysis for Mid-Infrared Gas Sensing
    El Shamy, Raghi S.
    Swillam, Mohamed A.
    Khalil, Diaa A.
    INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XXIV, 2020, 11283
  • [23] Single-frequency mid-infrared waveguide laser
    Guay, Philippe
    Genest, Jerome
    Michaud-Belleau, Vincent
    Hebert, Nicolas Bourbeau
    Lancaster, David G.
    OPTICS EXPRESS, 2019, 27 (23) : 33738 - 33745
  • [24] Dissipation loss of mid-infrared radiation in a dielectric waveguide
    N. S. Averkiev
    S. O. Slipchenko
    Z. N. Sokolova
    I. S. Tarasov
    Semiconductors, 2010, 44 : 243 - 245
  • [25] Silicon Photonics in the Mid-Infrared: Waveguide Absorption Sensors
    Lavchiev, Ventsislav M.
    Jakoby, Bernhard
    Ritchie, Grant
    Kirkbride, James
    Hedenig, Ursula
    Grille, Thomas
    Irsigler, Peter
    Lendl, Bernhard
    2014 IEEE SENSORS, 2014,
  • [26] Mid-infrared generation and spectroscopy with a PPLN ridge waveguide
    Denzer, W.
    Hancock, G.
    Hutchinson, A.
    Munday, M.
    Peverall, R.
    Ritchie, G. A. D.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2007, 86 (03): : 437 - 441
  • [27] Mid-infrared generation and spectroscopy with a PPLN ridge waveguide
    W. Denzer
    G. Hancock
    A. Hutchinson
    M. Munday
    R. Peverall
    G.A.D. Ritchie
    Applied Physics B, 2007, 86 : 437 - 441
  • [28] Dissipation Loss of Mid-Infrared Radiation in a Dielectric Waveguide
    Averkiev, N. S.
    Slipchenko, S. O.
    Sokolova, Z. N.
    Tarasov, I. S.
    SEMICONDUCTORS, 2010, 44 (02) : 243 - 245
  • [29] Chalcogenide waveguide structure for dispersion in mid-infrared wavelength
    Ashok, Nandam
    Lee, Yeung Lak
    Shin, WooJin
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2017, 56 (03)
  • [30] Mid-infrared suspended waveguide platform and building blocks
    Sanchez-Postigo, Alejandro
    Wanguemert-Perez, Juan Gonzalo
    Penades, Jordi Soler
    Ortega-Monux, Alejandro
    Nedeljkovic, Milos
    Halir, Robert
    Mimun, Faysal El Mokhtari
    Cheng, Yolanda Xu
    Qu, Zhibo
    Khokhar, Ali Z.
    Osman, Ahmed
    Cao, Wei
    Littlejohns, Callum G.
    Cheben, Pavel
    Mashanovich, Goran Z.
    Molina-Fernandez, Inigo
    IET OPTOELECTRONICS, 2019, 13 (02) : 55 - 61