Deformation of Functions by Star Product

被引:0
|
作者
Takeuchi, Tsukasa [1 ]
Yoshimi, Naoko [2 ]
Yoshioka, Akira [2 ]
机构
[1] Meteorol Coll, Kashiwa, Chiba, Japan
[2] Tokyo Univ Sci, Dept Math, Tokyo, Japan
来源
GEOMETRIC METHODS IN PHYSICS XL, WGMP 2022 | 2024年
关键词
D O I
10.1007/978-3-031-62407-0_8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One parameter deformation of function is given by means of convergent star product, where the deformation parameter varies in some domain of C. The deformed functions are called star functions. In this note, we discuss, as a simple case, a star product of functions of one variable, and then, the product becomes commutative and associative. Several concrete examples are given together with their basic identities.
引用
收藏
页码:103 / 112
页数:10
相关论文
共 50 条
  • [31] HADAMARD PRODUCT OF A AND A-STAR
    JOHNSON, CR
    PACIFIC JOURNAL OF MATHEMATICS, 1974, 51 (02) : 477 - 481
  • [32] Convergence of the Wick star product
    Beiser, Svea
    Roemer, Hartmann
    Waldmann, Stefan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 272 (01) : 25 - 52
  • [33] Convergence of the Gutt Star Product
    Esposito, Chiara
    Stapor, Paul
    Waldmann, Stefan
    JOURNAL OF LIE THEORY, 2017, 27 (02) : 579 - 622
  • [34] Star operation in product spaces
    Lahiri, B. K.
    Chakrabarty, M. K.
    Sen, Amita
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2008, 31 (1-2): : 27 - 29
  • [35] Note on the star-product
    Acta Cybern, 1 (99-104):
  • [36] Five star product of the month
    Designfax Magazine, 1997, 19 (10):
  • [37] A star product on the spherical harmonics
    Molin, P
    LETTERS IN MATHEMATICAL PHYSICS, 1996, 38 (03) : 227 - 236
  • [38] Invariant star-product on a Poisson-Lie group and h-deformation of the corresponding Lie algebra
    M. Mansour
    International Journal of Theoretical Physics, 1997, 36 : 3007 - 3014
  • [39] Invariant star-product on a Poisson-Lie group and h-deformation of the corresponding Lie algebra
    Mansour, M
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1997, 36 (12) : 3007 - 3014
  • [40] FUNCTIONS OF BOUNDED DEFORMATION
    TEMAM, R
    STRANG, G
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1980, 75 (01) : 7 - 21