Deformation of Functions by Star Product

被引:0
|
作者
Takeuchi, Tsukasa [1 ]
Yoshimi, Naoko [2 ]
Yoshioka, Akira [2 ]
机构
[1] Meteorol Coll, Kashiwa, Chiba, Japan
[2] Tokyo Univ Sci, Dept Math, Tokyo, Japan
来源
GEOMETRIC METHODS IN PHYSICS XL, WGMP 2022 | 2024年
关键词
D O I
10.1007/978-3-031-62407-0_8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One parameter deformation of function is given by means of convergent star product, where the deformation parameter varies in some domain of C. The deformed functions are called star functions. In this note, we discuss, as a simple case, a star product of functions of one variable, and then, the product becomes commutative and associative. Several concrete examples are given together with their basic identities.
引用
收藏
页码:103 / 112
页数:10
相关论文
共 50 条
  • [1] Star product algebras of test functions
    M. A. Soloviev
    Theoretical and Mathematical Physics, 2007, 153 : 1351 - 1363
  • [2] Star product formula of theta functions
    Kajiura, H
    LETTERS IN MATHEMATICAL PHYSICS, 2006, 75 (03) : 279 - 292
  • [3] Star product algebras of test functions
    Soloviev, M. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 153 (01) : 1351 - 1363
  • [4] Star Product Formula of Theta Functions
    Hiroshige Kajiura
    Letters in Mathematical Physics, 2006, 75 : 279 - 292
  • [5] Star product and the general Leigh-Strassler deformation
    Bundzik, Daniel
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (04):
  • [6] Remarks on the star product of functions on finite and compact groups
    Aniello, R.
    Ibort, A.
    Man'ko, V. I.
    Marmo, G.
    PHYSICS LETTERS A, 2009, 373 (04) : 401 - 408
  • [7] CHARACTERISTIC FUNCTIONS OF STATES IN STAR-PRODUCT QUANTIZATION
    Amosov, Grigori G.
    Man'ko, Vladimir I.
    JOURNAL OF RUSSIAN LASER RESEARCH, 2009, 30 (05) : 435 - 442
  • [8] Twisted convolution and Moyal star product of generalized functions
    Soloviev, M. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 172 (01) : 885 - 900
  • [9] Characteristic functions of states in star-product quantization
    Grigori G. Amosov
    Vladimir I. Man’ko
    Journal of Russian Laser Research, 2009, 30 : 435 - 442
  • [10] Twisted convolution and Moyal star product of generalized functions
    M. A. Soloviev
    Theoretical and Mathematical Physics, 2012, 172 : 885 - 900