Magnetized microcilia-based triboelectric nanogenerators with mechanoluminescence for energy harvesting and signal sensing

被引:1
|
作者
Wei, Xinjie [1 ]
Zhu, Qimeng [1 ]
Wang, Xinyu [1 ]
Fu, Zhuan [1 ,2 ]
Gong, Junyao [1 ,3 ]
Wang, Xiaofeng [1 ]
Zhang, Chunhua [1 ]
Xia, Liangjun [1 ]
Zhou, Sijie [1 ,4 ]
Xu, Weilin [1 ]
机构
[1] Wuhan Text Univ, State Key Lab New Text Mat & Adv Proc Technol, Wuhan 430200, Peoples R China
[2] Zhejiang Sci Tech Univ, Coll Text Sci & Engn, Hangzhou 310018, Peoples R China
[3] East China Univ Sci & Technol, Sch Mech & Power Engn, Shanghai 200237, Peoples R China
[4] Donghua Univ, Coll Text, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
Braided porous structure; Magnetized microcilia; Triboelectric nanogenerator; Mechanoluminescence; Woven fabric; TEXTILE; GENERATOR; FIBER;
D O I
10.1016/j.nanoen.2024.110092
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Flexible triboelectric nanogenerators with multimodal sensing capabilities have received considerable attention due to their potential for the development of wearable technology. However, the accurate and reliable display of motion trajectories represents a significant challenge. The structure design of the triboelectric nanogenerators yarn with magnetized microcilia and mechanoluminescence (MLY-TENG) was designed, which can be woven into the fabric of display force trajectories. The positive electrode is constructed by the braided yarn with a porous structure, consisting of polyurethane formed by wet spinning. Meanwhile, the flexible negative electrode is designed by the recombination of magnetized microcilia and the mechanoluminescent structure of polydimethylsiloxane, matching with the porous structure of the positive electrode, which enhances the electric transfer. At a compression depth of 100 %, compression frequency of 5 Hz, and magnetized powder of 50 wt%, the proposed MLY-TENG shows the triboelectric properties of 109.2 V and exhibits excellent cyclic stability. Furthermore, the magnetized microcilia on the luminescent magnetized microcilia (LMM) film with the polyurethane-copper-polyurethane (PWP)-based fabric (MLF-TENG) distinguishes the shape and area of object recognition with electrical signals and visual sensing of mechanoluminescence. The MLY-TENG offers the possibility of the development of advanced visualization techniques for wearable electronic devices.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [41] The future of energy harvesting: A brief review of MXenes-based triboelectric nanogenerators
    Mohan, Raja
    Ali, Fathilah
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2023, 34 (10) : 3193 - 3209
  • [42] Cellulosic gel-based triboelectric nanogenerators for energy harvesting and emerging applications
    Qin, Ying
    Zhang, Wanglin
    Liu, Yanhua
    Zhao, Jiamin
    Yuan, Jinxia
    Chi, Mingchao
    Meng, Xiangjiang
    Du, Guoli
    Cai, Chenchen
    Wang, Shuangfei
    Nie, Shuangxi
    NANO ENERGY, 2023, 106
  • [43] Asymmetric-elastic-structure fabric-based triboelectric nanogenerators for wearable energy harvesting and human motion sensing
    Gao, Yuanyuan
    Xu, Bingang
    Tan, Di
    Li, Meiqi
    Wang, YiTong
    Yang, Yujue
    CHEMICAL ENGINEERING JOURNAL, 2023, 466
  • [44] Ultra-stretchable and healable hydrogel-based triboelectric nanogenerators for energy harvesting and self-powered sensing
    Li, Guoxia
    Li, Longwei
    Zhang, Panpan
    Chang, Caiyun
    Xu, Fan
    Pu, Xiong
    RSC ADVANCES, 2021, 11 (28) : 17437 - 17444
  • [45] A comprehensive review on triboelectric nanogenerators based on Real-Time applications in energy harvesting and Self-Powered sensing
    Munirathinam, Prabavathi
    Mathew, Ammu Anna
    Shanmugasundaram, Vivekanandan
    Vivekananthan, Venkateswaran
    Purusothaman, Yuvasree
    Kim, Sang-Jae
    Chandrasekhar, Arunkumar
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2023, 297
  • [46] Triboelectric nanogenerators for blue energy harvesting in simulated wave conditions
    Demircioglu, Onur
    Cicek, Melih Ogeday
    Doganay, Doga
    Gazaloglu, Gunay
    Baykal, Cuneyt
    Cinar, Simge
    Unalan, Husnu Emrah
    NANO ENERGY, 2023, 107
  • [47] Harvesting Environment Mechanical Energy by Direct Current Triboelectric Nanogenerators
    Chuncai Shan
    Kaixian Li
    Yuntao Cheng
    Chenguo Hu
    Nano-Micro Letters, 2023, 15 (08) : 388 - 411
  • [48] Triboelectric nanogenerators: Harvesting mechanical energy using polymer films
    Wang, Zhong Lin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [49] Circuit Modeling Approach for Analyzing Triboelectric Nanogenerators for Energy Harvesting
    Yoon, Bo-Kyung
    Baik, Jeong Min
    Kim, Katherine A.
    2018 INTERNATIONAL POWER ELECTRONICS CONFERENCE (IPEC-NIIGATA 2018 -ECCE ASIA), 2018, : 3063 - 3068
  • [50] Chemical Cross-Linking Cellulose Aerogel-Based Triboelectric Nanogenerators for Energy Harvesting and Sensing Human Activities
    Xie, Bochao
    Ma, Yingying
    Wang, Jiale
    Liu, Yang
    Yin, Rong
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (15) : 19411 - 19420