Harnessing collective structure knowledge in data augmentation for graph neural networks

被引:0
|
作者
Ma, Rongrong [1 ]
Pang, Guansong [2 ]
Chen, Ling [1 ]
机构
[1] Univ Technol Sydney, Fac Engn & Informat Technol, 123 Broadway, Sydney, NSW 2007, Australia
[2] Singapore Management Univ, Sch Comp & Informat Syst, 80 Stamford Rd, Singapore 178902, Singapore
关键词
Graph representation learning; Graph neural networks; Data augmentation;
D O I
10.1016/j.neunet.2024.106651
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph neural networks (GNNs) have achieved state-of-the-art performance in graph representation learning. Message passing neural networks, which learn representations through recursively aggregating information from each node and its neighbors, are among the most commonly-used GNNs. However, a wealth of structural information of individual nodes and full graphs is often ignored in such process, which restricts the expressive power of GNNs. Various graph data augmentation methods that enable the message passing with richer structure knowledge have been introduced as one main way to tackle this issue, but they are often focused on individual structure features and difficult to scale up with more structure features. In this work we propose a novel approach, namely collective structure knowledge-augmented graph neural network (CoS-GNN), in which a new message passing method is introduced to allow GNNs to harness a diverse set of node- and graph- level structure features, together with original node features/attributes, in augmented graphs. In doing so, our approach largely improves the structural knowledge modeling of GNNs in both node and graph levels, resulting in substantially improved graph representations. This is justified by extensive empirical results where CoSGNN outperforms state-of-the-art models in various graph-level learning tasks, including graph classification, anomaly detection, and out-of-distribution generalization.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Knowledge Distillation Improves Graph Structure Augmentation for Graph Neural Networks
    Wu, Lirong
    Lin, Haitao
    Huang, Yufei
    Li, Stan Z.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [2] Data Augmentation for Graph Neural Networks
    Zhao, Tong
    Liu, Yozen
    Neves, Leonardo
    Woodford, Oliver
    Jiang, Meng
    Shah, Neil
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 11015 - 11023
  • [3] Rationalizing Graph Neural Networks with Data Augmentation
    Liu, Gang
    Inae, Eric
    Luo, Tengfei
    Jiang, Meng
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (04)
  • [4] KAFNN: A Knowledge Augmentation Framework to Graph Neural Networks
    Tang, Bisheng
    Chen, Xiaojun
    Wang, Dakui
    Zhao, Zhendong
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [5] Backdoor Attacks on Graph Neural Networks Trained with Data Augmentation
    Yashiki, Shingo
    Takahashi, Chako
    Suzuki, Koutarou
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2024, E107A (03) : 355 - 358
  • [6] MixupExplainer: Generalizing Explanations for Graph Neural Networks with Data Augmentation
    Zhang, Jiaxing
    Luo, Dongsheng
    Wei, Hua
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 3286 - 3296
  • [7] Multichannel Adaptive Data Mixture Augmentation for Graph Neural Networks
    Ye, Zhonglin
    Zhou, Lin
    Li, Mingyuan
    Zhang, Wei
    Liu, Zhen
    Zhao, Haixing
    INTERNATIONAL JOURNAL OF DATA WAREHOUSING AND MINING, 2024, 20 (01)
  • [8] Metropolis-Hastings Data Augmentation for Graph Neural Networks
    Park, Hyeonjin
    Lee, Seunghun
    Kim, Sihyeon
    Park, Jinyoung
    Jeong, Jisu
    Kim, Kyung-Min
    Ha, Jung-Woo
    Kim, Hyunwoo J.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [9] Local Augmentation for Graph Neural Networks
    Liu, Songtao
    Ying, Rex
    Dong, Hanze
    Li, Lanqing
    Xu, Tingyang
    Rong, Yu
    Zhao, Peilin
    Huang, Junzhou
    Wu, Dinghao
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [10] Multi-strategy adaptive data augmentation for Graph Neural Networks
    Juan, Xin
    Liang, Xiao
    Xue, Haotian
    Wang, Xin
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 258