Multichannel Adaptive Data Mixture Augmentation for Graph Neural Networks

被引:0
|
作者
Ye, Zhonglin [1 ]
Zhou, Lin [1 ]
Li, Mingyuan [1 ]
Zhang, Wei [1 ]
Liu, Zhen [2 ]
Zhao, Haixing [1 ]
机构
[1] Qinghai Normal Univ, Xining, Peoples R China
[2] Nagasaki Inst Appl Sci, Nagasaki, Japan
关键词
Graph Neural Network; Mixed DataAugmentation; Multi-channel Graph Neural Network; Polynomial Gaussian;
D O I
10.4018/IJDWM.349975
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Graph neural networks (GNNs) have demonstrated significant potential in analyzing complex graph-structured data. However, conventional GNNs encounter challenges in effectively incorporating global and local features. Therefore, this paper introduces a novel approach for GNN called multichannel adaptive data mixture augmentation (MAME-GNN). It enhances a GNN by adopting a multi-channel architecture and interactive learning to effectively capture and coordinate the interrelationships between local and global graph structures. Additionally, this paper introduces the polynomial-Gaussian mixture graph interpolation method to address the problem of single and sparse graph data, which generates diverse and nonlinear transformed samples, improving the model's generalization ability. The proposed MAME-GNN is validated through extensive experiments on publicly available datasets, showcasing its effectiveness. Compared to existing GNN models, the MAME-GNN exhibits superior performance, significantly enhancing the model's robustness and generalization ability.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Multi-strategy adaptive data augmentation for Graph Neural Networks
    Juan, Xin
    Liang, Xiao
    Xue, Haotian
    Wang, Xin
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 258
  • [2] Data Augmentation for Graph Neural Networks
    Zhao, Tong
    Liu, Yozen
    Neves, Leonardo
    Woodford, Oliver
    Jiang, Meng
    Shah, Neil
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 11015 - 11023
  • [3] Rationalizing Graph Neural Networks with Data Augmentation
    Liu, Gang
    Inae, Eric
    Luo, Tengfei
    Jiang, Meng
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (04)
  • [4] Heterogeneous graph neural network with graph-data augmentation and adaptive denoising
    Lou, Xiaojun
    Liu, Guanjun
    Li, Jian
    APPLIED INTELLIGENCE, 2024, 54 (05) : 4411 - 4424
  • [5] Heterogeneous graph neural network with graph-data augmentation and adaptive denoising
    Xiaojun Lou
    Guanjun Liu
    Jian Li
    Applied Intelligence, 2024, 54 : 4411 - 4424
  • [6] Backdoor Attacks on Graph Neural Networks Trained with Data Augmentation
    Yashiki, Shingo
    Takahashi, Chako
    Suzuki, Koutarou
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2024, E107A (03) : 355 - 358
  • [7] MixupExplainer: Generalizing Explanations for Graph Neural Networks with Data Augmentation
    Zhang, Jiaxing
    Luo, Dongsheng
    Wei, Hua
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 3286 - 3296
  • [8] Metropolis-Hastings Data Augmentation for Graph Neural Networks
    Park, Hyeonjin
    Lee, Seunghun
    Kim, Sihyeon
    Park, Jinyoung
    Jeong, Jisu
    Kim, Kyung-Min
    Ha, Jung-Woo
    Kim, Hyunwoo J.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [9] Local Augmentation for Graph Neural Networks
    Liu, Songtao
    Ying, Rex
    Dong, Hanze
    Li, Lanqing
    Xu, Tingyang
    Rong, Yu
    Zhao, Peilin
    Huang, Junzhou
    Wu, Dinghao
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [10] Harnessing collective structure knowledge in data augmentation for graph neural networks
    Ma, Rongrong
    Pang, Guansong
    Chen, Ling
    NEURAL NETWORKS, 2024, 180