Seed Germination Detection Method Based on Lightweight YOLOv5

被引:0
|
作者
Zhang, Yuanchang [1 ]
Huang, Yongming [1 ]
机构
[1] Southeast Univ, Sch Automat, Nanjing, Jiangsu, Peoples R China
关键词
Seed germination test; YOLOv5; lightweight model; Zea Mays; Secale Cereale; Pennisetum Glaucum;
D O I
10.1145/3672919.3672974
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Seed germination test is an important task for seed researchers to measure seed quality and performance. In the seed germination test, a large amount of manual effort is usually required to collect data on seed germination and growth, which is a tedious, time-consuming, and error-prone process. Classic image analysis methods are not well-suited for large-scale germination tests as they often rely on manually adjusting color-based thresholds. Here, we propose an improved lightweight model called MB-YOLOv5 based on YOLOv5 for seed germination detection, which enables automatic detection of seed germination and significantly reduces the manpower and time costs of seed germination tests. The results show that the MB-YOLOv5 model achieves average accuracy rates of 99.3%, 99.1%, and 99.2% for germination detection of Zea Mays,Secale Cereale, and Pennisetum Glaucum seeds, respectively. Moreover, the MB-YOLOv5 model reduces the model size and floating-point operations by 77% and 85.4%, respectively, compared to YOLOv5s. This method provides a reference for the automation of seed germination experiments.
引用
收藏
页码:299 / 304
页数:6
相关论文
共 50 条
  • [21] A lightweight bus passenger detection model based on YOLOv5
    Li, Xiaosong
    Wu, Yanxia
    Fu, Yan
    Zhang, Lidan
    Hong, Ruize
    IET IMAGE PROCESSING, 2023, 17 (14) : 3927 - 3937
  • [22] Lightweight Tunnel Obstacle Detection Based on Improved YOLOv5
    Li, Yingjie
    Ma, Chuanyi
    Li, Liping
    Wang, Rui
    Liu, Zhihui
    Sun, Zizheng
    SENSORS, 2024, 24 (02)
  • [23] Improved lightweight road damage detection based on YOLOv5
    LIU Chang
    SUN Yu
    CHEN Jin
    YANG Jing
    WANG Fengchao
    Optoelectronics Letters, 2025, 21 (05) : 314 - 320
  • [24] Lightweight UAV Detection Algorithm Based on Improved YOLOv5
    Peng Y.
    Tu X.
    Yang Q.
    Li R.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2023, 50 (12): : 28 - 38
  • [25] Lightweight Fire Detection Algorithm Based on Improved YOLOv5
    Zhang, Dawei
    Chen, Yutang
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (06) : 809 - 816
  • [26] Lightweight Research of YOLOv5 Target Detection
    He, Yu
    Tian, Junwei
    Zhang, Zhen
    Wang, Qin
    Zhao, Peng
    Computer Engineering and Applications, 2023, 59 (01) : 92 - 99
  • [27] Lightweight Rice Planthopper Identification Method Based on YOLOv5
    Li, Siquan
    Wang, Yi
    Shi, Teng
    Chen, Xi
    Tang, Zhen
    Zeng, Ziyu
    Wen, Xin
    Shang, Yanling
    IAENG International Journal of Computer Science, 2024, 51 (08) : 1079 - 1085
  • [28] A Lightweight Detection Method for Blueberry Fruit Maturity Based on an Improved YOLOv5 Algorithm
    Xiao, Feng
    Wang, Haibin
    Xu, Yueqin
    Shi, Zhen
    AGRICULTURE-BASEL, 2024, 14 (01):
  • [29] Plant Disease Detection and Classification Method Based on the Optimized Lightweight YOLOv5 Model
    Wang, Haiqing
    Shang, Shuqi
    Wang, Dongwei
    He, Xiaoning
    Feng, Kai
    Zhu, Hao
    AGRICULTURE-BASEL, 2022, 12 (07):
  • [30] Detection of Cotton Seed Damage Based on Improved YOLOv5
    Liu, Zhicheng
    Wang, Long
    Liu, Zhiyuan
    Wang, Xufeng
    Hu, Can
    Xing, Jianfei
    PROCESSES, 2023, 11 (09)