State of health estimation for the lithium-ion batteries based on CNN-MLP network

被引:0
|
作者
Liao, Yu [1 ,2 ]
Ma, Xianchao [1 ]
Guo, Li [3 ]
Feng, Xu [1 ]
Hu, Yuhang [1 ]
Li, Runze [4 ]
机构
[1] Hubei Univ Nationalities, Enshi, Peoples R China
[2] Sichuan Univ, Ringgold Stand Inst, Chengdu, Peoples R China
[3] Anhui Polytech Univ, Sch Elect Engn, Wuhu, Peoples R China
[4] Nanjing Univ Aeronaut & Astronaut, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
New energy vehicles; lithium-ion battery; state of health estimation; prediction; neural networks; MANAGEMENT;
D O I
10.1177/01423312241262947
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of new energy vehicles, it is recognized that predicting the state of health (SoH) of lithium-ion battery is crucial for ensuring the safety of networked vehicles. However, the selection of health indicators greatly influences the accuracy of SoH prognostics. To obtain an accurate estimation of SoH, this paper proposes an SoH estimation model based on incremental capacity features. First, the incremental capacity curve is extracted from battery discharge data and filtered using a Gaussian filtering algorithm to remove noise. Second, statistical features extracted from the incremental capacity curve are considered health factors, and multiple optimal features are selected using Pearson's correlation coefficient. Finally, the innovative integration of spatiotemporal feature extraction with advanced pattern recognition and nonlinear modeling led to the proposal of a hybrid Convolutional Neural Network-Multi-Layer Perceptron (CNN-MLP) model for estimating the SoH of lithium-ion batteries. To validate the high accuracy of the proposed method, experiments are conducted using the CALCE battery dataset and compared with other popular models. The experimental results indicate that the proposed method can predict the SoH of the battery with superior performance, such as higher speed and accuracy.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] State of health estimation of lithium-ion batteries based on multi-feature extraction and temporal convolutional network
    Liu, Suzhen
    Chen, Ziqian
    Yuan, Luhang
    Xu, Zhicheng
    Jin, Liang
    Zhang, Chuang
    Journal of Energy Storage, 2024, 75
  • [42] State of health estimation of lithium-ion batteries based on Mixers-bidirectional temporal convolutional neural network
    Gao, Jingyi
    Yang, Dongfang
    Wang, Shi
    Li, Zhaoting
    Wang, Licheng
    Wang, Kai
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [43] Model-based state estimation for lithium-ion batteries
    Rausch, Matthias
    Klein, Reinhardt
    Streif, Stefan
    Pankiewitz, Christian
    Findeisen, Rolf
    AT-AUTOMATISIERUNGSTECHNIK, 2014, 62 (04) : 296 - 311
  • [44] State of health estimation for lithium-ion batteries based on temperature prediction and gated recurrent unit neural network
    Chen, Zheng
    Zhao, Hongqian
    Zhang, Yuanjian
    Shen, Shiquan
    Shen, Jiangwei
    Liu, Yonggang
    JOURNAL OF POWER SOURCES, 2022, 521
  • [45] An Online State of Health Estimation Method for Lithium-ion Batteries Based on Integrated Voltage
    Zhou, Yapeng
    Huang, Miaohua
    Pecht, Michael
    2018 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2018,
  • [46] Multistep Fast Charging-Based State of Health Estimation of Lithium-Ion Batteries
    Zhang, Dayu
    Wang, Zhenpo
    Liu, Peng
    Wang, Qiushi
    She, Chengqi
    Bauer, Pavol
    Qin, Zian
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (03): : 4640 - 4652
  • [47] State of health estimation based on modified Gaussian process regression for lithium-ion batteries
    Wang, Jiwei
    Deng, Zhongwei
    Yu, Tao
    Yoshida, Akihiro
    Xu, Lijun
    Guan, Guoqing
    Abudula, Abuliti
    JOURNAL OF ENERGY STORAGE, 2022, 51
  • [48] Domain generalization-based state-of-health estimation of lithium-ion batteries
    Chen, Liping
    Bao, Xinyuan
    Lopes, Antonio M.
    Li, Xin
    Kong, Huifang
    Chai, Yi
    Li, Penghua
    JOURNAL OF POWER SOURCES, 2024, 610
  • [49] State-of-health estimation of lithium-ion batteries based on QPSO-BPNN
    Yao, Yongming
    Li, Fei
    Li, Haofa
    Liu, Junchi
    Wang, Xindi
    Li, Tianyu
    IONICS, 2025, 31 (02) : 1437 - 1449
  • [50] State of Health (SOH) Estimation of Lithium-Ion Batteries Based on ABC-BiGRU
    Li, Hao
    Chen, Chao
    Wei, Jie
    Chen, Zhuo
    Lei, Guangzhou
    Wu, Lingling
    ELECTRONICS, 2024, 13 (09)