High Performance Pseudo-Pt@Pt Core-Shell Electrocatalyst for Oxygen Reduction Reaction: A Density Functional Theory Study

被引:0
|
作者
Zhang, Yan-Ping [1 ,2 ]
Wei, He-He [1 ,2 ]
Wang, Zhi-Qiang [1 ,2 ]
Hu, P. [1 ,2 ,3 ]
Gong, Xue-Qing [1 ,2 ,4 ]
机构
[1] East China Univ Sci & Technol, Ctr Computat Chem, State Key Lab Green Chem Engn & Ind Catalysis, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Res Inst Ind Catalysis, Sch Chem & Mol Engn, Shanghai 200237, Peoples R China
[3] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2024年 / 128卷 / 37期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; ELECTRIC-FIELD; ALLOY; CATALYSTS; PLATINUM; TRENDS; TRANSITION; NANOCAGES; SURFACES;
D O I
10.1021/acs.jpcc.4c04875
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of cost-effective Pt-based oxygen reduction reaction (ORR) electrocatalysts is crucial for the application of proton exchange membrane fuel cells (PEMFCs). In this work, by using density functional theory calculations, we show that the Pt-M@Pt core-shell alloy (M = Co, Ni, Cu, with Pt-M alloy as the pseudo-Pt core and Pt as the shell) gives significantly higher ORR activity than pure Pt and common Pt-M alloys. Through structural and electronic analyses, we suggest that this is mainly caused by the asymmetric strain modulation effect of the pseudo-Pt core on the Pt shell and the interfacial charge transfer, which leads to a significant downward shift of the d-band center (epsilon d) and alters the bonding mode between the metal d orbitals and the adsorbed oxygen (O) p orbitals from equal contributions of the five d orbitals to dominant contributions of d(xy) and d(x2-y2) orbitals, thereby weakening the adsorption strength of O. Notably, the PtCo@Pt(111) surface with a suitable compressive strain and appropriate interfacial charge transfer exhibits the highest ORR activity and the corresponding overpotential is 0.38 V lower than Pt(111).
引用
收藏
页码:15476 / 15486
页数:11
相关论文
共 50 条
  • [21] Rational syntheses of core-shell Fex@Pt nanoparticles for the study of electrocatalytic oxygen reduction reaction
    Jang, Ji-Hoon
    Lee, Eunjik
    Park, Jinwoo
    Kim, Gunn
    Hong, Suklyun
    Kwon, Young-Uk
    SCIENTIFIC REPORTS, 2013, 3
  • [22] Rational syntheses of core-shell Fex@Pt nanoparticles for the study of electrocatalytic oxygen reduction reaction
    Ji-Hoon Jang
    Eunjik Lee
    Jinwoo Park
    Gunn Kim
    Suklyun Hong
    Young-Uk Kwon
    Scientific Reports, 3
  • [23] Ni-Pt Core-Shell Nanoparticles as Oxygen Reduction Electrocatalysts: Effect of Pt Shell Coverage
    Chen, Yumei
    Liang, Zhixiu
    Yang, Fan
    Liu, Yuwen
    Chen, Shengli
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (49): : 24073 - 24079
  • [24] Integrated Pt2Ni alloy@Pt core-shell nanoarchitectures with high electrocatalytic activity for oxygen reduction reaction
    Zhang, Yuan
    Han, Tingting
    Fang, Jianhui
    Xu, Pengcheng
    Li, Xinxin
    Xu, Jiaqiang
    Liu, Chung-Chiun
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (29) : 11400 - 11407
  • [25] High Performance Carbon-Supported Core @ Shell PdSn @ Pt Electrocatalysts for Oxygen Reduction Reaction
    Zhang, W.
    Wang, R.
    Wang, H.
    Lei, Z.
    FUEL CELLS, 2010, 10 (04) : 734 - 739
  • [26] Density functional investigation of oxygen reduction reaction on Pt3Pd alloy electrocatalyst
    Sadeghian, Shakiba
    Jafari, Mahmoud
    MATERIALS RESEARCH EXPRESS, 2020, 7 (01):
  • [27] Effects of the Pt Shell Thickness on the Oxygen Reduction Reaction on a Well-Defined Pd@Pt Core-Shell Model Surface
    Hashiguchi, Yuta
    Nakamura, Isao
    Honma, Tetsuo
    Matsushita, Toshiyuki
    Murayama, Haruno
    Tokunaga, Makoto
    Choe, Yoong-Kee
    Fujitani, Tadahiro
    CHEMPHYSCHEM, 2023, 24 (01)
  • [28] Mechanistic study of the electrochemical oxygen reduction reaction on Pt(111) using density functional theory
    Hyman, Matthew P.
    Medlin, J. Will
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (31): : 15338 - 15344
  • [29] Core-shell nanostructure supported Pt catalyst with improved electrocatalytic stability in oxygen reduction reaction
    Kim, Do-Young
    Han, Sang-Beom
    Lee, Young-Woo
    Park, Kyung-Won
    MATERIALS CHEMISTRY AND PHYSICS, 2013, 137 (03) : 704 - 708
  • [30] Influence of the composition of core-shell Au-Pt nanoparticle electrocatalysts for the oxygen reduction reaction
    Li, Xiaowei
    Liu, Juanying
    He, Wei
    Huang, Qinhong
    Yang, Hui
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2010, 344 (01) : 132 - 136