A hierarchy of WZW models related to super Poisson-Lie T-duality

被引:2
|
作者
Eghbali, Ali [1 ]
Rezaei-Aghdam, Adel [1 ]
机构
[1] Azarbaijan Shahid Madani Univ, Fac Basic Sci, Dept Phys, Tabriz 53714161, Iran
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 09期
基金
美国国家科学基金会;
关键词
SIGMA-MODEL; CLASSIFICATION;
D O I
10.1140/epjc/s10052-024-13297-1
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Motivated by super Poisson-Lie (PL) symmetry of the Wess-Zumino-Witten (WZW) model based on the (C3+A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(C<^>3+A)$$\end{document} Lie supergroup of our previous work (Eghbali et al., in J High Energy Phys 07:134, 2013. arXiv:1303.4069 [hep-th]), we first obtain and classify all Drinfeld superdoubles (DSDs) generated by the Lie superbialgebra structures on the (C3+A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathscr {C}}<^>3+ {\mathscr {A}})$$\end{document} Lie superalgebra as a theorem. Then, introducing a general formulation we find the conditions under which a two-dimensional sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-model may be equivalent to a WZW model. With the help of this formulation and starting the super PL symmetric (C3+A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(C<^>3+A)$$\end{document} WZW model, we get a hierarchy of WZW models related to super PL T-duality, in such a way that it is different from the super PL T-plurality, because the DSDs are, in this process, non-isomorphic. The most interesting indication of this work is that the (C3+A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(C<^>3+A)$$\end{document} WZW model does remain invariant under the super PL T-duality transformation, that is, the model is super PL self-dual.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Worldsheet boundary conditions in Poisson-Lie T-duality
    Albertsson, Cecilia
    Reid-Edwards, Ronald A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (03):
  • [22] Supersymmetric quantum corrections and Poisson-Lie T-duality
    Assaoui, F
    Lhallabi, T
    CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (02) : 277 - 288
  • [23] WZW models as mutual super Poisson-Lie T-dual sigma models
    A. Eghbali
    A. Rezaei-Aghdam
    Journal of High Energy Physics, 2013
  • [24] WZW models as mutual super Poisson-Lie T-dual sigma models
    Eghbali, A.
    Rezaei-Aghdam, A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (07):
  • [25] Canonical equivalence of non-isometric σ-models and Poisson-Lie T-duality
    Sfetsos, K
    NUCLEAR PHYSICS B, 1998, 517 (1-3) : 549 - 566
  • [26] Non-Abelian T-duality of AdSd≤3 families by Poisson-Lie T-duality
    Eghbali, Ali
    Naderi, Reza
    Rezaei-Aghdam, Adel
    EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (07):
  • [27] Poisson-Lie T-duality defects and target space fusion
    Saskia Demulder
    Thomas Raml
    Journal of High Energy Physics, 2022
  • [28] Poisson-Lie T-duality: The path-integral derivation
    Tyurin, E
    vonUnge, R
    PHYSICS LETTERS B, 1996, 382 (03) : 233 - 240
  • [29] Poisson-Lie T-duality and (1,1) supersymmetry
    Klimcik, C
    PHYSICS LETTERS B, 1997, 414 (1-2) : 85 - 91
  • [30] Poisson-Lie T-duality and non-trivial monodromies
    Cabrera, A.
    Montani, H.
    Zuccalli, M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (05) : 576 - 599