Sensing perceived urban stress using space syntactical and urban building density data: A machine learning-based approach

被引:0
|
作者
Le, Quang Hoai [1 ]
Kwon, Nahyun [2 ]
Nguyen, The Hung [1 ]
Kim, Byeol [3 ]
Ahn, Yonghan [1 ]
机构
[1] Hanyang Univ ERICA, Dept Smart City Engn, Ansan 15588, South Korea
[2] Hanyang Univ ERICA, Dept Architectural Engn, Ansan 15588, South Korea
[3] Hanyang Univ ERICA, Ctr AI Technol Construct, Ansan 15588, South Korea
关键词
Machine learning; Built environment; Perceived urban stress; Urban building density; Space syntax; Street view image; BUILT ENVIRONMENT; SOCIAL STRESS; INDEX; ASSOCIATIONS; PERCEPTIONS; QUALITY; HEALTH;
D O I
10.1016/j.buildenv.2024.112054
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Human well-being is an essential criterion in achieving smart and sustainable cities. Given the significant influence of stress on individuals physical and mental health, various approaches have been proposed to examine the subjective experience of stress induced by the urban built environment and its effects on human well-being. Nevertheless, conducting assessments on a large scale continues to be a significant obstacle, particularly in today's context of rapid urbanization. This study utilized advancements in Machine Learning (ML) to develop a method for measuring perceived stress by analyzing urban building density, space syntactic characteristics, and visual features of the built environment. Through the utilization of ML models, a predictive approach has been developed that can capture the perceived stress levels of urban dwellers. The results are verified with public survey data, with R-2 reaching 0.698 obtained by evaluating the mean stress scores of 25 districts in Seoul city. The findings demonstrate that the proposed approach can effectively measure perceived stress, enabling urban planners to analyze the spatial pattern of perceived stress and the influence of the built environment on this perception. This work expands current approaches, which concentrate solely on parks, open spaces, or streetscapes, by developing a more comprehensive predictive model for measuring perceived stress levels in various urban areas.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Mercury Prediction in Urban Soils by Remote Sensing and Relief Data Using Machine Learning Techniques
    Suleymanov, Azamat
    Suleymanov, Ruslan
    Kulagin, Andrey
    Yurkevich, Marija
    REMOTE SENSING, 2023, 15 (12)
  • [22] Machine Learning-based Path Loss Modeling in Urban Propagation Environments
    Juang, Rong-Terng
    Lin, Jia-Qing
    Lin, Hsin-Piao
    2021 30TH WIRELESS AND OPTICAL COMMUNICATIONS CONFERENCE (WOCC 2021), 2021, : 291 - 292
  • [23] Machine learning-based techniques for land subsidence simulation in an urban area
    Liu, Jianxin
    Liu, Wenxiang
    Allechy, Fabrice Blanchard
    Zheng, Zhiwen
    Liu, Rong
    Kouadio, Kouao Laurent
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 352
  • [24] Improved Deep Learning-Based Vehicle Detection for Urban Applications Using Remote Sensing Imagery
    Ragab, Mahmoud
    Abdushkour, Hesham A.
    Khadidos, Adil O.
    Alshareef, Abdulrhman M.
    Alyoubi, Khaled H.
    Khadidos, Alaa O.
    REMOTE SENSING, 2023, 15 (19)
  • [25] MACHINE LEARNING-BASED APPROACH FOR LANDSLIDE SUSCEPTIBILITY MAPPING USING MULTIMODAL DATA
    Ma, Xianping
    Pun, Man-On
    Liu, Ming
    Wang, Yang
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5174 - 5177
  • [26] Identification of odor emission sources in urban areas using machine learning-based classification models
    Choi, Yelim
    Kim, Kyunghoon
    Kim, Seonghwan
    Kim, Daekeun
    ATMOSPHERIC ENVIRONMENT-X, 2022, 13
  • [27] Urban building extraction using satellite imagery through Machine Learning
    Prakash, P. S.
    Soumya, K. D.
    Bharath, H. A.
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 1670 - 1675
  • [28] Cultivating historical heritage area vitality using urban morphology approach based on big data and machine learning
    Wu, Jiayu
    Lu, Yutian
    Gao, Hei
    Wang, Mingshu
    COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2022, 91
  • [29] A novel ensemble learning approach to extract urban impervious surface based on machine learning algorithms using SAR and optical data
    Ahmad, Muhammad Nasar
    Shao, Zhenfeng
    Xiao, Xiongwu
    Fu, Peng
    Javed, Akib
    Ara, Iffat
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 132
  • [30] Data-Driven Urban Traffic Accident Analysis and Prediction Using Logit and Machine Learning-Based Pattern Recognition Models
    Najafi Moghaddam Gilani, Vahid
    Hosseinian, Seyed Mohsen
    Ghasedi, Meisam
    Nikookar, Mohammad
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021