Personalized process-type learning path recommendation based on process mining and deep knowledge tracing

被引:0
|
作者
Zhang, Feng [1 ]
Feng, Xuguang [1 ]
Wang, Yibing [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao, Peoples R China
关键词
Process-type learning path; Learning path recommendation; Process mining; Deep knowledge tracking; Path branches recommendation;
D O I
10.1016/j.knosys.2024.112431
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Personalized learning path recommendation considers learning goals, learning abilities, and other personalized characteristics of learners to generate a suitable learning path. Existing approaches include global optimal and local iterative path recommendation, which recommend a sequence of learning objects. Consequently, the learner can only learn in the order specified by the learning path, which provides limited flexibility for the learner. In addition, existing studies cannot both present the complete path and handle changes in the learner's knowledge state while learning along the path. This study proposes a process-type learning path model and its recommendation approach, which presents a learning path in the form of a flowchart and dynamically recommends path branches according to the knowledge states of the learner during the learning process. Specifically, deep knowledge tracing is used to annotate the knowledge states of learners in historical logs, and process mining is used to generate a personalized process-type learning path that contains sequences, parallel relationships, and selection relationships between learning objects. In addition, the correlation between the knowledge state and the selection of different branches of a learning path in historical logs can be obtained via decision mining. Thus, a branch recommendation model is trained and used to recommend a path branch in a process-type path with the highest probability of mastering the target learning object of the learner based on the learner's knowledge state. The experimental results demonstrate that the learning effectiveness and efficiency of the proposed approach are better than those of the existing approaches.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Learning path recommendation based on knowledge tracing and reinforcement learning
    Wan, Han
    Che, Baoliang
    Luo, Hongzhen
    Luo, Xiaoyan
    2023 IEEE INTERNATIONAL CONFERENCE ON ADVANCED LEARNING TECHNOLOGIES, ICALT, 2023, : 55 - 57
  • [2] Personalized Learning Path Recommendation Based on Weak Concept Mining
    Diao, Xiuli
    Zeng, Qingtian
    Li, Lei
    Duan, Hua
    Zhao, Hua
    Song, Zhengguo
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [3] Personalized Micro-Learning Support Based on Process Mining
    Chen, Jian
    Zhang, Yueqin
    Sun, Jingyu
    Chen, Yongle
    Lin, Fuping
    Jin, Qun
    2015 7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY IN MEDICINE AND EDUCATION (ITME), 2015, : 511 - 515
  • [4] Deep Learning-Based Educational Image Content Understanding and Personalized Learning Path Recommendation
    Xu, Guoli
    Wong, Cora Un In
    TRAITEMENT DU SIGNAL, 2024, 41 (01) : 459 - 467
  • [5] Personalized Recommendation of Photography Based on Deep Learning
    Ji, Zhixiang
    Tang, Jie
    Wu, Gangshan
    MULTIMEDIA MODELING (MMM 2019), PT I, 2019, 11295 : 214 - 226
  • [6] Meta-Path-Based Deep Representation Learning for Personalized Point of Interest Recommendation
    李重
    吴梅梅
    Journal of Donghua University(English Edition), 2021, 38 (04) : 310 - 322
  • [7] Enhancing Personalized Learning Through Process Mining
    Wambsganss, Thiemo
    Schmitt, Anuschka
    BUSINESS & INFORMATION SYSTEMS ENGINEERING, 2024,
  • [8] Personalized Learning Path Recommendation for E-Learning Based on Knowledge Graph and Graph Convolutional Network
    Zhang, Xiaoming
    Liu, Shan
    Wang, Huiyong
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2023, 33 (01) : 109 - 131
  • [9] Learning Process-consistent Knowledge Tracing
    Shen, Shuanghong
    Liu, Qi
    Chen, Enhong
    Huang, Zhenya
    Huang, Wei
    Yin, Yu
    Su, Yu
    Wang, Shijin
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 1452 - 1460
  • [10] Review of Deep Learning-Based Personalized Learning Recommendation
    Zhong, Ling
    Wei, Yantao
    Yao, Huang
    Deng, Wei
    Wang, Zhifeng
    Tong, Mingwen
    2020 11TH INTERNATIONAL CONFERENCE ON E-EDUCATION, E-BUSINESS, E-MANAGEMENT, AND E-LEARNING (IC4E 2020), 2020, : 145 - 149