Differentially methylated regions interrogated for metastable epialleles associate with offspring adiposity

被引:0
|
作者
Waldrop, Stephanie W. [1 ]
Sauder, Katherine A. [1 ,2 ]
Niemiec, Sierra S. [3 ]
Kechris, Katerina J. [3 ]
Yang, Ivana, V [4 ]
Starling, Anne P. [2 ,5 ]
Perng, Wei [2 ]
Dabelea, Dana [2 ]
Borengasser, Sarah J. [1 ]
机构
[1] Univ Colorado Anschutz Med Campus, Dept Pediat, Sect Nutr, Aurora, CO 80045 USA
[2] Univ Colorado Anschutz Med Campus, Lifecourse Epidemiol Adipos & Diabet LEAD Ctr, Aurora, CO 80045 USA
[3] Univ Colorado Anschutz Med Campus, Ctr Innovat Design & Anal, Aurora, CO 80045 USA
[4] Univ Colorado Anschutz Med Campus, Dept Biomed Informat, Aurora, CO 80045 USA
[5] Univ North Carolina Chapel Hill, Dept Epidemiol, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
adiposity; biomarkers; childhood obesity; DNA methylation; metastable epialleles; BODY-COMPOSITION ASSESSMENT; BLOOD DNA METHYLATION; RAPID WEIGHT-GAIN; SUBSET-QUANTILE; CHILDHOOD; OBESITY; INFANCY; BIRTH; NORMALIZATION; TRAJECTORIES;
D O I
10.1080/17501911.2024.2359365
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Aim: Assess if cord blood differentially methylated regions (DMRs) representing human metastable epialleles (MEs) associate with offspring adiposity in 588 maternal-infant dyads from the Colorado Health Start Study. Materials & methods: DNA methylation was assessed via the Illumina 450K array (similar to 439,500 CpG sites). Offspring adiposity was obtained via air displacement plethysmography. Linear regression modeled the association of DMRs potentially representing MEs with adiposity. Results & conclusion: We identified two potential MEs, ZFP57, which associated with infant adiposity change and B4GALNT4, which associated with infancy and childhood adiposity change. Nine DMRs annotating to genes that annotated to MEs associated with change in offspring adiposity (false discovery rate <0.05). Methylation of approximately 80% of DMRs identified associated with decreased change in adiposity.
引用
收藏
页码:1215 / 1230
页数:16
相关论文
共 50 条
  • [41] Accelerating the detection of DNA differentially methylated regions using multiple GPUs
    Reano, Carlos
    Olanda, Ricardo
    Baydal, Elvira
    Perez, Mariano
    Orduna, Juan M.
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (09): : 13386 - 13410
  • [42] Testing differentially methylated regions through functional principal component analysis
    Milad, Mohamed
    Olbricht, Gayla R.
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (07) : 1677 - 1691
  • [43] Assessing genome-wide significance for the detection of differentially methylated regions
    Page, Christian M.
    Vos, Linda
    Rounge, Trine B.
    Harbo, Hanne F.
    Andreassen, Bettina K.
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2018, 17 (05)
  • [44] ipDMR: identification of differentially methylated regions with interval P-values
    Xu, Zongli
    Xie, Changchun
    Taylor, Jack A.
    Niu, Liang
    BIOINFORMATICS, 2021, 37 (05) : 711 - 713
  • [45] Detection of Differentially Methylated Regions Using Bayesian Curve Credible Bands
    Park J.
    Lin S.
    Statistics in Biosciences, 2018, 10 (1) : 20 - 40
  • [46] Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies
    Jaffe, Andrew E.
    Murakami, Peter
    Lee, Hwajin
    Leek, Jeffrey T.
    Fallin, M. Daniele
    Feinberg, Andrew P.
    Irizarry, Rafael A.
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2012, 41 (01) : 200 - 209
  • [47] Differentially methylated regions in maternal and paternal uniparental disomy for chromosome 7
    Hannula-Jouppi, Katariina
    Muurinen, Mari
    Lipsanen-Nyman, Marita
    Reinius, Lovisa E.
    Ezer, Sini
    Greco, Dario
    Kere, Juha
    EPIGENETICS, 2014, 9 (03) : 351 - 365
  • [48] Identification of differentially methylated regions in new genes associated with knee osteoarthritis
    Bonin, Carolina A.
    Lewallen, Eric A.
    Baheti, Saurabh
    Bradley, Elizabeth W.
    Stuart, Michael J.
    Berry, Daniel J.
    van Wijnen, Andre J.
    Westendorf, Jennifer J.
    GENE, 2016, 576 (01) : 312 - 318
  • [49] A panel of differentially methylated regions enable prognosis prediction for colorectal cancer
    Zhang, Lei
    Li, Dapeng
    Du, Fenqi
    Huang, Hao
    Yuan, Chao
    Fu, Jinming
    Sun, Simin
    Tian, Tian
    Liu, Xinyan
    Sun, Hongru
    Zhu, Lin
    Xu, Jing
    Liu, Yanlong
    Cui, Binbin
    Zhao, Yashuang
    GENOMICS, 2021, 113 (05) : 3285 - 3293
  • [50] Detection of significantly differentially methylated regions in targeted bisulfite sequencing data
    Hebestreit, Katja
    Dugas, Martin
    Klein, Hans-Ulrich
    BIOINFORMATICS, 2013, 29 (13) : 1647 - 1653