Ergogenic effects of spinal cord stimulation on exercise performance following spinal cord injury

被引:2
|
作者
Hodgkiss, Daniel D. [1 ]
Williams, Alison M. M. [2 ,3 ]
Shackleton, Claire S. [2 ,4 ]
Samejima, Soshi [2 ,5 ]
Balthazaar, Shane J. T. [1 ,2 ,6 ,7 ]
Lam, Tania [2 ,3 ]
Krassioukov, Andrei V. [2 ,4 ,8 ]
Nightingale, Tom E. [1 ,2 ]
机构
[1] Univ Birmingham, Sch Sport Exercise & Rehabil Sci, Birmingham, England
[2] Univ British Columbia, Int Collaborat Repair Discoveries, Vancouver, BC, Canada
[3] Univ British Columbia, Sch Kinesiol, Vancouver, BC, Canada
[4] Univ British Columbia, Dept Med, Div Phys Med & Rehabil, Vancouver, BC, Canada
[5] Univ Washington, Dept Rehabil Med, Seattle, WA USA
[6] Univ British Columbia, Dept Echocardiog, Div Cardiol, Vancouver Gen, Vancouver, BC, Canada
[7] Univ British Columbia, St Pauls Hosp, Vancouver, BC, Canada
[8] Vancouver Coastal Hlth, GF Strong Rehabil Ctr, Vancouver, BC, Canada
基金
英国惠康基金;
关键词
spinal cord injuries; spinal cord stimulation; autonomic nervous system; exercise performance; cardiovascular control; CARDIOVASCULAR-DISEASE; FUNCTIONAL WALKING; NEUROLOGICAL LEVEL; RESPONSES; CATECHOLAMINES; INDIVIDUALS; PHYSIOLOGY; CAPACITY; RECOVERY; OUTCOMES;
D O I
10.3389/fnins.2024.1435716
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Cervical or upper-thoracic spinal cord injury (SCI, >= T6) often leads to low resting blood pressure (BP) and impaired cardiovascular responses to acute exercise due to disrupted supraspinal sympathetic drive. Epidural spinal cord stimulation (invasive, ESCS) and transcutaneous spinal cord stimulation (non-invasive, TSCS) have previously been used to target dormant sympathetic circuits and modulate cardiovascular responses. This case series compared the effects of cardiovascular-optimised ESCS and TSCS versus sham ESCS and TSCS on modulating cardiovascular responses and improving submaximal upper-body exercise performance in individuals with SCI. Seven males with a chronic, motor-complete SCI between C6 and T4 underwent a mapping session to identify cardiovascular responses to spinal cord stimulation. Subsequently, four participants (two ESCS and two TSCS) completed submaximal exercise testing. Stimulation parameters (waveform, frequency, intensity, epidural electrode array configuration, and transcutaneous electrode locations in the lumbosacral region) were optimised to elevate cardiovascular responses (CV-SCS). A sham condition (SHAM-SCS) served as a comparison. Participants performed arm-crank exercise to exhaustion at a fixed workload corresponding to above ventilatory threshold, on separate days, with CV-SCS or SHAM-SCS. At rest, CV-SCS increased BP and predicted left ventricular cardiac contractility and total peripheral resistance. During exercise, CV-SCS increased time to exhaustion and peak oxygen pulse (a surrogate for stroke volume), relative to SHAM-SCS. Ratings of perceived exertion also tended to be lower with CV-SCS than SHAM-SCS. Comparable improvements in time to exhaustion with ESCS and TSCS suggest that both approaches could be promising ergogenic aids to support exercise performance or rehabilitation, along with reducing fatigue during activities of daily living in individuals with SCI.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Cardiovascular safety of transcutaneous spinal cord stimulation in cervical spinal cord injury
    Samejima, Soshi
    Malik, Raza N.
    Ge, Jennifer
    Rempel, Lucas
    Cao, Kawami
    Desai, Sameer
    Shackleton, Claire
    Kyani, Anahita
    Sarikhani, Parisa
    D'Amico, Jessica M.
    Krassioukov, Andrei, V
    NEUROTHERAPEUTICS, 2025, 22 (02)
  • [32] The Neuroprotective Mechanism of Spinal Cord Stimulation in Spinal Cord Ischemia/Reperfusion Injury
    Li, Huixian
    Dong, Xiuhua
    Yang, Yanwei
    Jin, Mu
    Cheng, Weiping
    NEUROMODULATION, 2021, 24 (01): : 43 - 48
  • [33] Spinal cord stimulation for the restoration of bladder function after spinal cord injury
    Steadman, Casey J.
    Grill, Warren M.
    HEALTHCARE TECHNOLOGY LETTERS, 2020, 7 (03) : 87 - 92
  • [34] Electrical stimulation in spinal cord injury
    Sadowsky, CL
    NEUROREHABILITATION, 2001, 16 (03) : 165 - 169
  • [35] A Scoping Review of Epidural Spinal Cord Stimulation for Improving Motor and Voiding Function Following Spinal Cord Injury
    D'hondt, Nina
    Marcial, Karmi Margaret
    Mittal, Nimish
    Costanzi, Matteo
    Hoydonckx, Yasmine
    Kumar, Pranab
    Englesakis, Marina F.
    Burns, Anthony
    Bhatia, Anuj
    TOPICS IN SPINAL CORD INJURY REHABILITATION, 2023, 29 (02) : 12 - 30
  • [36] Patient-reported effects of transcutaneous spinal cord stimulation on spasticity in patients with spinal cord injury
    Jorgensen, Vivien
    Flaaten, Anne Birgitte
    Ingvarsson, Pall E.
    Lannem, Anne Marie
    JOURNAL OF SPINAL CORD MEDICINE, 2025,
  • [37] Pain following spinal cord injury
    PJ Siddall
    JD Loeser
    Spinal Cord, 2001, 39 : 63 - 73
  • [38] Pain following spinal cord injury
    Gülçin Demirel
    Hürriyet Yllmaz
    Belgin Gençosmanoğlu
    Nur Kesiktaş
    Spinal Cord, 1998, 36 : 25 - 28
  • [39] Depression following a spinal cord injury
    Boekamp, JR
    Overholser, JC
    Schubert, DSP
    INTERNATIONAL JOURNAL OF PSYCHIATRY IN MEDICINE, 1996, 26 (03): : 329 - 349
  • [40] Pain following spinal cord injury
    Defrin, R
    Ohry, A
    Blumen, N
    Urca, G
    SPINAL CORD, 2002, 40 (02) : 96 - 97