Ergogenic effects of spinal cord stimulation on exercise performance following spinal cord injury

被引:2
|
作者
Hodgkiss, Daniel D. [1 ]
Williams, Alison M. M. [2 ,3 ]
Shackleton, Claire S. [2 ,4 ]
Samejima, Soshi [2 ,5 ]
Balthazaar, Shane J. T. [1 ,2 ,6 ,7 ]
Lam, Tania [2 ,3 ]
Krassioukov, Andrei V. [2 ,4 ,8 ]
Nightingale, Tom E. [1 ,2 ]
机构
[1] Univ Birmingham, Sch Sport Exercise & Rehabil Sci, Birmingham, England
[2] Univ British Columbia, Int Collaborat Repair Discoveries, Vancouver, BC, Canada
[3] Univ British Columbia, Sch Kinesiol, Vancouver, BC, Canada
[4] Univ British Columbia, Dept Med, Div Phys Med & Rehabil, Vancouver, BC, Canada
[5] Univ Washington, Dept Rehabil Med, Seattle, WA USA
[6] Univ British Columbia, Dept Echocardiog, Div Cardiol, Vancouver Gen, Vancouver, BC, Canada
[7] Univ British Columbia, St Pauls Hosp, Vancouver, BC, Canada
[8] Vancouver Coastal Hlth, GF Strong Rehabil Ctr, Vancouver, BC, Canada
基金
英国惠康基金;
关键词
spinal cord injuries; spinal cord stimulation; autonomic nervous system; exercise performance; cardiovascular control; CARDIOVASCULAR-DISEASE; FUNCTIONAL WALKING; NEUROLOGICAL LEVEL; RESPONSES; CATECHOLAMINES; INDIVIDUALS; PHYSIOLOGY; CAPACITY; RECOVERY; OUTCOMES;
D O I
10.3389/fnins.2024.1435716
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Cervical or upper-thoracic spinal cord injury (SCI, >= T6) often leads to low resting blood pressure (BP) and impaired cardiovascular responses to acute exercise due to disrupted supraspinal sympathetic drive. Epidural spinal cord stimulation (invasive, ESCS) and transcutaneous spinal cord stimulation (non-invasive, TSCS) have previously been used to target dormant sympathetic circuits and modulate cardiovascular responses. This case series compared the effects of cardiovascular-optimised ESCS and TSCS versus sham ESCS and TSCS on modulating cardiovascular responses and improving submaximal upper-body exercise performance in individuals with SCI. Seven males with a chronic, motor-complete SCI between C6 and T4 underwent a mapping session to identify cardiovascular responses to spinal cord stimulation. Subsequently, four participants (two ESCS and two TSCS) completed submaximal exercise testing. Stimulation parameters (waveform, frequency, intensity, epidural electrode array configuration, and transcutaneous electrode locations in the lumbosacral region) were optimised to elevate cardiovascular responses (CV-SCS). A sham condition (SHAM-SCS) served as a comparison. Participants performed arm-crank exercise to exhaustion at a fixed workload corresponding to above ventilatory threshold, on separate days, with CV-SCS or SHAM-SCS. At rest, CV-SCS increased BP and predicted left ventricular cardiac contractility and total peripheral resistance. During exercise, CV-SCS increased time to exhaustion and peak oxygen pulse (a surrogate for stroke volume), relative to SHAM-SCS. Ratings of perceived exertion also tended to be lower with CV-SCS than SHAM-SCS. Comparable improvements in time to exhaustion with ESCS and TSCS suggest that both approaches could be promising ergogenic aids to support exercise performance or rehabilitation, along with reducing fatigue during activities of daily living in individuals with SCI.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Ergogenic effects of invasive and non-invasive spinal cord stimulation strategies following spinal cord injury: a case series
    Hodgkiss, D. D.
    Williams, A. M. M.
    Shackleton, S.
    Samejima, S.
    Balthazaar, S. J. T.
    Lam, T.
    Krassioukov, A. V.
    Nightingale, T. E.
    CELL TRANSPLANTATION, 2024, 33
  • [2] SPINAL CORD INJURY HARMS THE BRAIN AND SPINAL CORD AND THESE EFFECTS ARE REDUCED BY EXERCISE
    Gomez-Pinilla, Fernando
    Zhuang, Yumei
    Ying, Zhe
    JOURNAL OF NEUROTRAUMA, 2011, 28 (06) : A27 - A27
  • [3] Spinal Cord Stimulation After Spinal Cord Injury: Promising Multisystem Effects
    Donovan, Jayne
    Forrest, Gail
    Linsenmeyer, Todd
    Kirshblum, Steven
    CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS, 2021, 9 (01) : 23 - 31
  • [4] Spinal Cord Stimulation After Spinal Cord Injury: Promising Multisystem Effects
    Jayne Donovan
    Gail Forrest
    Todd Linsenmeyer
    Steven Kirshblum
    Current Physical Medicine and Rehabilitation Reports, 2021, 9 : 23 - 31
  • [5] Improved Motor Function in Cervical Spinal Cord Injury Following Spinal Cord Stimulation
    Suarez, Michael
    Gallacher, David M.
    Jevotovsky, David S.
    Chopra, Harman
    Broachwala, Mustafa
    Castellanos, Joel P.
    CLINICAL CASE REPORTS, 2025, 13 (02):
  • [6] EPIDURAL SPINAL CORD STIMULATION AND MANAGEMENT OF AUTONOMIC DYSFUNCTIONS FOLLOWING SPINAL CORD INJURY
    Krassioukov, Andrei V.
    West, Christopher R.
    Phillips, Aaron
    Squair, Jordan
    Williams, Alex
    Lam, Tania
    Walter, Matthias
    Kavanagh, Alex
    Nightingale, Tom
    Lee, Amanda H. X.
    JOURNAL OF NEUROTRAUMA, 2018, 35 (16) : A163 - A163
  • [7] Epidural Spinal Cord Stimulation for the Restoration of Balance and Gait Following Spinal Cord Injury
    Chavakula, Vamsidhar
    Vasudeva, Viren
    Chi, John
    NEUROSURGERY, 2016, 78 (06) : N19 - N20
  • [8] Complete Spinal Cord Injury: An Indication for Spinal Cord Stimulation?
    Johnson, Stephen
    Friedlander, Robert M.
    Monaco, Edward A., III
    NEUROSURGERY, 2014, 75 (04) : N23 - N24
  • [9] The Potential of Spinal Cord Stimulation in Treating Spinal Cord Injury
    Forouzan, Eli Justin
    Rashid, Mohammed Yousif
    Nasr, Ned F.
    Abd-Elsayed, Alaa
    Knezevic, Nebojsa Nick
    CURRENT PAIN AND HEADACHE REPORTS, 2025, 29 (01)
  • [10] Brain and Spinal Cord Interaction: Protective Effects of Exercise Prior to Spinal Cord Injury
    Gomez-Pinilla, Fernando
    Ying, Zhe
    Zhuang, Yumei
    PLOS ONE, 2012, 7 (02):