Online parameter adaptive control of mobile robots based on deep reinforcement learning under multiple optimisation objectives

被引:0
|
作者
Sui, Xiuli [1 ,2 ]
Chen, Haiyong [2 ]
机构
[1] Tianjin Sino German Univ Appl Sci, Software & Commun Sch, Tianjin, Peoples R China
[2] Hebei Univ Technol, Sch Artificial Intelligence, Tianjin, Peoples R China
关键词
learning (artificial intelligence); mobile robots; TRACKING CONTROL;
D O I
10.1049/ccs2.12105
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fixed control parameters and various optimisation objectives significantly limit the robot control performance. To address such issues, a parameter adaptive controller based on deep reinforcement learning is introduced firstly to adjust control parameters according to the real-time system state. Further, multiple evaluation mechanisms are constructed to take account of optimisation objectives so that the controller can adapt to different control performance indexes by different evaluation mechanisms. Finally, the target pedestrian tracking control with mobile robots is selected as the validation case study, and the Proportional-Derivative Controller is chosen as the foundation controller. Several simulation and experimental examples are designed, and the results demonstrate that the proposed method shows satisfactory performance while taking account of multiple optimisation objectives.
引用
收藏
页码:86 / 97
页数:12
相关论文
共 50 条
  • [21] Deep Reinforcement Learning For Visual Navigation of Wheeled Mobile Robots
    Nwaonumah, Ezebuugo
    Samanta, Biswanath
    IEEE SOUTHEASTCON 2020, 2020,
  • [22] An Online Deep Reinforcement Learning Based Parameter Identification Method for HVDC System
    Hu, Jianxiong
    Wang, Qi
    Tang, Yi
    2021 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2021,
  • [23] Adaptive Cruise Control Based on Safe Deep Reinforcement Learning
    Zhao, Rui
    Wang, Kui
    Che, Wenbo
    Li, Yun
    Fan, Yuze
    Gao, Fei
    SENSORS, 2024, 24 (08)
  • [24] Deep adaptive control with online identification for industrial robots
    Shen Tan
    Qiao XueChun
    Dong YunLong
    Wang YuRan
    Zhang Wei
    Yuan Ye
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2022, 65 (11) : 2593 - 2604
  • [25] Deep adaptive control with online identification for industrial robots
    SHEN Tan
    QIAO XueChun
    DONG YunLong
    WANG YuRan
    ZHANG Wei
    YUAN Ye
    Science China(Technological Sciences), 2022, (11) : 2593 - 2604
  • [26] Deep adaptive control with online identification for industrial robots
    Tan Shen
    XueChun Qiao
    YunLong Dong
    YuRan Wang
    Wei Zhang
    Ye Yuan
    Science China Technological Sciences, 2022, 65 : 2593 - 2604
  • [27] Reinforcement Learning Based Online Parameter Adaptation for Model Predictive Tracking Control Under Slippery Condition
    Gao, Huidong
    Zhou, Rui
    Tomizuka, Masayoshi
    Xu, Zhuo
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 2675 - 2682
  • [28] Deep adaptive control with online identification for industrial robots
    SHEN Tan
    QIAO XueChun
    DONG YunLong
    WANG YuRan
    ZHANG Wei
    YUAN Ye
    Science China Technological Sciences, 2022, 65 (11) : 2593 - 2604
  • [29] Adaptive Eligibility Traces for Online Deep Reinforcement Learning
    Kobayashi, Taisuke
    INTELLIGENT AUTONOMOUS SYSTEMS 16, IAS-16, 2022, 412 : 417 - 428
  • [30] Deep Reinforcement Learning for the Autonomous Adaptive Behavior of Social Robots
    Maroto-Gomez, Marcos
    Malfaz, Maria
    Castro-Gonzalez, Alvaro
    Angel Salichs, Miguel
    SOCIAL ROBOTICS, ICSR 2022, PT I, 2022, 13817 : 208 - 217