Hölder continuity and Harnack estimate for non-homogeneous parabolic equations

被引:0
|
作者
Arya, Vedansh [1 ]
Julin, Vesa [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
基金
芬兰科学院;
关键词
35K55; 35B45;
D O I
10.1007/s00208-024-02979-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we continue the study on intrinsic Harnack inequality for non-homogeneous parabolic equations in non-divergence form initiated by the first author in Arya (Calc Var Partial Differ Equ 61:30-31, 2022). We establish a forward-in-time intrinsic Harnack inequality, which in particular implies the H & ouml;lder continuity of the solutions. We also provide a Harnack type estimate on global scale which quantifies the strong minimum principle. In the time-independent setting, this together with Arya (2022) provides an alternative proof of the generalized Harnack inequality proven by the second author in Julin (Arch Ration Mech Anal 216:673-702, 2015).
引用
收藏
页码:2319 / 2335
页数:17
相关论文
共 50 条
  • [21] Local boundedness and Hölder continuity for the parabolic fractional p-Laplace equations
    Mengyao Ding
    Chao Zhang
    Shulin Zhou
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [22] H?LDER CONTINUITY FOR THE PARABOLIC ANDERSON MODEL WITH SPACE-TIME HOMOGENEOUS GAUSSIAN NOISE
    Raluca M BALAN
    Lluís QUER-SARDANYONS
    宋健
    Acta Mathematica Scientia, 2019, 39 (03) : 717 - 730
  • [23] Hölder Continuity for the Parabolic Anderson Model with Space-Time Homogeneous Gaussian Noise
    Raluca M Balan
    Lluís Quer-Sardanyons
    Jian Song
    Acta Mathematica Scientia, 2019, 39 : 717 - 730
  • [24] JOINT H?LDER CONTINUITY OF PARABOLIC ANDERSON MODEL
    胡耀忠
    Khoa Lê
    Acta Mathematica Scientia, 2019, 39 (03) : 764 - 780
  • [25] THRESHOLD RESULT FOR SEMILINEAR PARABOLIC EQUATIONS WITH INDEFINITE NON-HOMOGENEOUS TERM
    谢君辉
    戴求亿
    刘芳
    Acta Mathematica Scientia, 2012, 32 (06) : 2302 - 2314
  • [26] A Hölder estimate with an optimal tail for nonlocal parabolic p-Laplace equations
    Sun-Sig Byun
    Kyeongbae Kim
    Annali di Matematica Pura ed Applicata (1923 -), 2024, 203 : 109 - 147
  • [27] Joint Hölder Continuity of Parabolic Anderson Model
    Yaozhong Hu
    Khoa Lê
    Acta Mathematica Scientia, 2019, 39 : 764 - 780
  • [28] THRESHOLD RESULT FOR SEMILINEAR PARABOLIC EQUATIONS WITH INDEFINITE NON-HOMOGENEOUS TERM
    Xie Junhui
    Dai Qiuyi
    Liu Fang
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (06) : 2302 - 2314
  • [29] On Hölder Continuity of Solutions to the Beltrami Equations
    V. Ryazanov
    R. Salimov
    E. Sevost’yanov
    Ukrainian Mathematical Journal, 2023, 75 : 586 - 599
  • [30] On Hölder Continuity of Solutions to the Beltrami Equations
    Ryazanov, V.
    Salimov, R.
    Sevost'yanov, E.
    UKRAINIAN MATHEMATICAL JOURNAL, 2023, 75 (04) : 586 - 599