AI-Based Self-Tracking of the Mind: Philosophical-Ethical Implications

被引:0
|
作者
Friedrich, Orsolya [1 ]
Seifert, Johanna [1 ]
Schleidgen, Sebastian [1 ]
机构
[1] Fernuniv, Inst Philosophie, Med Eth, Univ Str 33, D-58097 Hagen, Germany
关键词
self-tracking; artificial intelligence; e-health; mental health; mental disorder;
D O I
10.1055/a-1364-5068
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Zusammenfassung Ziel Zunehmend werden KI-basierte Anwendungen entwickelt, die Nutzende dabei unterstutzen sollen, ihre Emotionen, uberzeugungen und Verhaltensmuster digital zu erfassen, zu verwalten und zu verandern. Solche Formen der Selbstvermessung im Bereich der menschlichen Psyche konnen vielfaltige medizinische Vorteile in Diagnostik, Pravention und Therapie haben. Dieser Beitrag geht der Frage nach, welche philosophisch-ethischen Herausforderungen gegenuber diesen Vorteilen abgewogen werden sollten. Methode Zunachst werden einige KI-basierte Anwendungen zur Selbstvermessung psychischer Eigenschaften und Prozesse skizziert. Im Anschluss werden relevante philosophisch-ethische Implikationen aufgezeigt. Ergebnisse Folgende Aspekte erweisen sich als normativ relevant: Verbesserung versus Verminderung von Selbstbestimmungsfahigkeit; Verbesserung der Selbstkenntnis versus Entfremdung; positive versus negative Aspekte eigenverantwortlicher Gesundheitsfursorge; epistemische Herausforderungen von KI-Anwendungen; Schwierigkeiten von konzeptionellen und normativen Festlegungen in den Anwendungen. Abstract Objective AI-based applications are increasingly developed to support users to digitally record, manage and change their emotions, beliefs and behavior patterns. Such forms of self-tracking in the mental sphere are accompanied by a variety of medical benefits in diagnostics, prevention, and therapy. This article pursues the question of which philosophical-ethical implications must be taken into account when dealing with these advantages. Methods First, some AI-based applications for self-tracking of mental characteristics and processes are outlined. Subsequently, relevant philosophical-ethical implications are presented. Results The following aspects prove to be normatively relevant: improvement versus reduction of self-determination; improvement of self-knowledge versus alienation; positive versus negative aspects of self-responsible health care; epistemic challenges of AI applications; difficulties of conceptual and normative definitions in the applications.
引用
收藏
页码:S42 / S47
页数:6
相关论文
共 50 条
  • [41] AI-based Self-verification Supports for Clinical Guideline E-learning
    Bottrighi, Alessio
    Nera, Stefano
    Piovesan, Luca
    Raina, Erica
    Terenziani, Paolo
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON INFORMATION AND EDUCATION INNOVATIONS, ICIEI 2024, 2024, : 25 - 30
  • [42] AI-Based Self-Learning System in Distributed Structural Health Monitoring and Control
    Kai Yan
    Xin Lin
    Wenfeng Ma
    Yuxiao Zhang
    Neural Processing Letters, 2023, 55 : 229 - 245
  • [43] AI-Based Self-Learning System in Distributed Structural Health Monitoring and Control
    Yan, Kai
    Lin, Xin
    Ma, Wenfeng
    Zhang, Yuxiao
    NEURAL PROCESSING LETTERS, 2023, 55 (01) : 229 - 245
  • [44] Informative Feedback and Explainable AI-Based Recommendations to Support Students' Self-regulation
    Afzaal, Muhammad
    Zia, Aayesha
    Nouri, Jalal
    Fors, Uno
    TECHNOLOGY KNOWLEDGE AND LEARNING, 2024, 29 (01) : 331 - 354
  • [45] Quantitative Assessment for Self-Tracking of Acute Stress Based on Triangulation Principle in a Wearable Sensor System
    Wu, Wanqing
    Pirbhulal, Sandeep
    Zhang, Heye
    Mukhopadhyay, Subhas Chandra
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (02) : 703 - 713
  • [46] Analysis of a PLL-Based Down Converter and Phase Detection Circuit for Self-Tracking Arrays
    Winterstein, Andreas
    Dreher, Achim
    2015 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2015, : 1546 - 1547
  • [47] Informative Feedback and Explainable AI-Based Recommendations to Support Students’ Self-regulation
    Muhammad Afzaal
    Aayesha Zia
    Jalal Nouri
    Uno Fors
    Technology, Knowledge and Learning, 2024, 29 : 331 - 354
  • [48] Design and Evaluation of a Power Wheelchair-based Self-tracking System to Prevent Pressure Ulcers
    Motahar, Tamanna
    Rivera-Melo, Brandon
    Imburgia, Ross
    Kim, YeonJae
    Gardner, James
    Rosenbluth, Jeffrey
    Wiese, Jason
    Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2025, 9 (01)
  • [49] AI-based control techniques for maximum power point tracking of photovoltaic systems using a boost converter
    Kahsay, Amanuel Haftu
    Regulski, Pawet
    Derugo, Piotr
    PRZEGLAD ELEKTROTECHNICZNY, 2023, 99 (11): : 1 - 6
  • [50] Target Detection, Tracking and Avoidance System for Low-cost UAVs using AI-Based Approaches
    Varatharasan, Vinorth
    Rao, Alice Shuang Shuang
    Toutounji, Eric
    Hong, Ju-Hyeon
    Shin, Hyo-Sang
    2019 INTERNATIONAL WORKSHOP ON RESEARCH, EDUCATION AND DEVELOPMENT OF UNMANNED AERIAL SYSTEMS (RED UAS 2019), 2019, : 142 - 147