Sustainable chemical recycling of waste plastics into olefins through low-pressure hydrothermal liquefaction and microwave pyrolysis: Techno-economic analysis and life cycle assessment

被引:0
|
作者
Lee, Seyeong [1 ,2 ]
Lee, Hyejeong [1 ,2 ]
Lee, Jaewon [3 ]
Cho, Hyungtae [4 ]
机构
[1] Korea Inst Ind Technol, Lowcarbon Energy Grp, 55 Jongga Ro, Ulsan, 44413, South Korea
[2] Yonsei Univ, Dept Chem & Biomol Engn, 50 Yonsei Ro, Seoul 03722, South Korea
[3] Hanyang Univ, Dept Mat Sci & Chem Engn, Ansan 15588, South Korea
[4] Kyung Hee Univ, Coll Engn, Dept Chem Engn, Yongin, South Korea
关键词
Olefin recovery; Carbon cycle; Low-pressure hydrothermal liquefaction (LP-HTL); Microwave steam pyrolysis (MSP); ENERGY; POLYETHYLENE; CRACKING; YIELD;
D O I
10.1016/j.enconman.2024.118861
中图分类号
O414.1 [热力学];
学科分类号
摘要
Plastics pose environmental challenges in landfills, persisting for extended periods spanning thousands to millions of years. Consequently, research into plastic depolymerization has gained significance, aiming to address the problem of plastic waste management and the increasing demand for plastics. This study proposes a novel process for recovering olefins, specifically ethylene and propylene, from waste polyethylene (PE) and polypropylene (PP) through low-pressure hydrothermal liquefaction (LP-HTL) and microwave steam pyrolysis (MSP) chemical recycling. Mixed waste PE and PP undergo LP-HTL to produce gas and oil. Subsequently, the oil from the LP-HTL undergoes cracking via MSP to enhance olefin recovery. Olefin compounds produced through distillation serve as refrigerants. The results demonstrated the production of 39.75 wt% C2H4 and 13.32 wt% C3H6, achieving a total recovery of 53.07 wt% of olefin materials. The levelized cost of ethylene (LCOE) in the proposed process was calculated at 0.89 USD/kg C2H4, equating to a 72.86 % reduction compared with that in flash pyrolysis. Furthermore, the life cycle assessment (LCA) results indicated reduced 100-year global temperature potential and global warming potential (GTP100 and GWP100) emissions of 2.46 and 2.55 kg CO2 eq/ kg C2H4, respectively, approximately 90 % lower than that in the flash process. Thus, the proposed process, with its energy efficiency and high recovery rates, can serve as a benchmark for future plastic depolymerization endeavors aimed at achieving a circular carbon economy.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Microalgae to biofuels through hydrothermal liquefaction: Open-source techno-economic analysis and life cycle assessment
    Chen, Peter H.
    Quinn, Jason C.
    APPLIED ENERGY, 2021, 289
  • [2] Techno-economic analysis and life cycle assessment of microwave co-pyrolysis of food waste and low-density polyethylene
    Neha, Shukla
    Ramesh, Kondragunta Prasanna Kumar
    Remya, Neelancherry
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 52
  • [3] Techno-economic analysis and life cycle assessment for catalytic fast pyrolysis of mixed plastic waste
    Yadav, Geetanjali
    Singh, Avantika
    Dutta, Abhijit
    Uekert, Taylor
    DesVeaux, Jason S.
    Nicholson, Scott R.
    Tan, Eric C. D.
    Mukarakate, Calvin
    Schaidle, Joshua A.
    Wrasman, Cody J.
    Carpenter, Alberta C.
    Baldwin, Robert M.
    Roman-Leshkov, Yuriy
    Beckham, Gregg T.
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (09) : 3638 - 3653
  • [4] Techno-economic and whole life cycle assessment of ester fuels production from agricultural waste via hydrothermal liquefaction
    Chen Zhuo
    Li Xueqin
    Wang Zhiwei
    Yang Yantao
    Sun Tanglei
    Huhe Taoli
    Liu Peng
    Li Yanling
    Wu Youqing
    Lei Tingzhou
    Qu Jingshen
    INDUSTRIAL CROPS AND PRODUCTS, 2023, 192
  • [5] Uncertainty analysis for techno-economic and life-cycle assessment of wet waste hydrothermal liquefaction with centralized upgrading to produce fuel blendstocks
    Jiang, Yuan
    Mevawala, Chirag
    Li, Shuyun
    Schmidt, Andrew
    Billing, Justin
    Thorson, Michael
    Snowden-Swan, Lesley
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (03):
  • [6] Microwave-assisted pyrolysis in biomass and waste valorisation: Insights into the life-cycle assessment (LCA) and techno-economic analysis (TEA)
    Foong, Shin Ying
    Chan, Yi Herng
    Yek, Peter Nai Yuh
    Lock, Serene Sow Mun
    Chin, Bridgid Lai Fui
    Yiin, Chung Loong
    Lan, John Chi -Wei
    Lam, Su Shiung
    CHEMICAL ENGINEERING JOURNAL, 2024, 491
  • [7] Techno-economic feasibility and life cycle assessment of dairy effluent to renewable diesel via hydrothermal liquefaction
    Summers, Hailey M.
    Ledbetter, Rhesa N.
    McCurdy, Alex T.
    Morgan, Michael R.
    Seefeldt, Lance C.
    Jena, Umakanta
    Hoekman, S. Kent
    Quinn, Jason C.
    BIORESOURCE TECHNOLOGY, 2015, 196 : 431 - 440
  • [8] Life cycle assessment and techno-economic analysis of sustainable bioenergy production: a review
    Osman, Ahmed I.
    Fang, Bingbing
    Zhang, Yubing
    Liu, Yunfei
    Yu, Jiacheng
    Farghali, Mohamed
    Rashwan, Ahmed K.
    Chen, Zhonghao
    Chen, Lin
    Ihara, Ikko
    Rooney, David W.
    Yap, Pow-Seng
    ENVIRONMENTAL CHEMISTRY LETTERS, 2024, 22 (03) : 1115 - 1154
  • [9] Techno-Economic and Life Cycle Assessment of Pyrolysis of Unsegregated Urban Municipal Solid Waste in India
    Chhabra, Vibhuti
    Parashar, Anand
    Shastri, Yogendra
    Bhattacharya, Sankar
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (03) : 1473 - 1482
  • [10] Life cycle assessment and techno-economic analysis of sustainable bioenergy production: a review
    Ahmed I. Osman
    Bingbing Fang
    Yubing Zhang
    Yunfei Liu
    Jiacheng Yu
    Mohamed Farghali
    Ahmed K. Rashwan
    Zhonghao Chen
    Lin Chen
    Ikko Ihara
    David W. Rooney
    Pow-Seng Yap
    Environmental Chemistry Letters, 2024, 22 : 1115 - 1154