Deep learning-based image quality assessment for optical coherence tomography macular scans: a multicentre study

被引:2
|
作者
Tang, Ziqi [1 ]
Wang, Xi [2 ,3 ]
Ran, An Ran [1 ]
Yang, Dawei [1 ]
Ling, Anni [1 ]
Yam, Jason C. [1 ,4 ]
Zhang, Xiujuan [1 ]
Szeto, Simon K. H. [1 ,4 ]
Chan, Jason [1 ,4 ]
Wong, Cherie Y. K. [1 ,4 ]
Hui, Vivian W. K. [1 ,4 ]
Chan, Carmen K. M. [1 ,4 ]
Wong, Tien Yin [5 ,6 ]
Cheng, Ching-Yu [7 ,8 ]
Sabanayagam, Charumathi [7 ,9 ]
Tham, Yih Chung [7 ,8 ]
Liew, Gerald [10 ]
Anantharaman, Giridhar [11 ]
Raman, Rajiv [12 ]
Cai, Yu [13 ]
Che, Haoxuan [14 ]
Luo, Luyang [3 ]
Liu, Quande [3 ]
Wong, Yiu Lun [1 ]
Ngai, Amanda K. Y. [1 ]
Yuen, Vincent L. [1 ]
Kei, Nelson [15 ]
Lai, Timothy Y. Y. [1 ]
Chen, Hao [14 ,16 ]
Tham, Clement C. [1 ,4 ]
Heng, Pheng-Ann [3 ,17 ]
Cheung, Carol Y. [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Ophthalmol & Visual Sci, Hong Kong, Peoples R China
[2] Zhejiang Lab, Hangzhou, Zhejiang, Peoples R China
[3] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China
[4] Hong Kong Eye Hosp, Hong Kong, Peoples R China
[5] Tsinghua Univ, Tsinghua Med, Beijing, Peoples R China
[6] Beijing Tsinghua Changgung Hosp, Sch Clin Med, Beijing, Peoples R China
[7] Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore, Singapore
[8] Natl Univ Singapore, Ctr Innovat & Precis Eye Hlth, Yong Loo Lin Sch Med, Dept Ophthalmol, Singapore, Singapore
[9] Duke NUS Med Sch, Ophthalmol & Visual Sci Acad Clin Program, Singapore, Singapore
[10] Univ Sydney, Westmead Inst Med Res, Dept Ophthalmol, Sydney, NSW, Australia
[11] Giridhar Eye Inst, Cochin, Kerala, India
[12] Sankara Nethralaya, Shri Bhagwan Mahavir Vitreoretinal Serv, Chennai, Tamil Nadu, India
[13] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Peoples R China
[14] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong, Peoples R China
[15] Chinese Univ Hong Kong, Sch Life Sci, Hong Kong, Peoples R China
[16] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Hong Kong, Peoples R China
[17] Chinese Univ Hong Kong, Inst Med Intelligence & XR, Hong Kong, Peoples R China
关键词
Retina; Imaging; Macula;
D O I
10.1136/bjo-2023-323871
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Aims To develop and externally test deep learning (DL) models for assessing the image quality of three-dimensional (3D) macular scans from Cirrus and Spectralis optical coherence tomography devices. Methods We retrospectively collected two data sets including 2277 Cirrus 3D scans and 1557 Spectralis 3D scans, respectively, for training (70%), fine-tuning (10%) and internal validation (20%) from electronic medical and research records at The Chinese University of Hong Kong Eye Centre and the Hong Kong Eye Hospital. Scans with various eye diseases (eg, diabetic macular oedema, age-related macular degeneration, polypoidal choroidal vasculopathy and pathological myopia), and scans of normal eyes from adults and children were included. Two graders labelled each 3D scan as gradable or ungradable, according to standardised criteria. We used a 3D version of the residual network (ResNet)-18 for Cirrus 3D scans and a multiple-instance learning pipline with ResNet-18 for Spectralis 3D scans. Two deep learning (DL) models were further tested via three unseen Cirrus data sets from Singapore and five unseen Spectralis data sets from India, Australia and Hong Kong, respectively. Results In the internal validation, the models achieved the area under curves (AUCs) of 0.930 (0.885-0.976) and 0.906 (0.863-0.948) for assessing the Cirrus 3D scans and Spectralis 3D scans, respectively. In the external testing, the models showed robust performance with AUCs ranging from 0.832 (0.730-0.934) to 0.930 (0.906-0.953) and 0.891 (0.836-0.945) to 0.962 (0.918-1.000), respectively. Conclusions Our models could be used for filtering out ungradable 3D scans and further incorporated with a disease-detection DL model, allowing a fully automated eye disease detection workflow.
引用
收藏
页码:1555 / 1563
页数:9
相关论文
共 50 条
  • [31] Deep-learning based, automated segmentation of macular edema in optical coherence tomography
    Lee, Cecilia S.
    Tyring, Ariel J.
    Deruyter, Nicolaas P.
    Wu, Yue
    Rokem, Ariel
    Lee, Aaron Y.
    BIOMEDICAL OPTICS EXPRESS, 2017, 8 (07): : 3440 - 3448
  • [32] An assessment of the quality of optical coherence tomography image acquisition
    Elder Iarossi Zago
    Abdul Jawwad Samdani
    Gabriel Tensol Rodrigues Pereira
    Armando Vergara-Martel
    Mohamad Amer Alaiti
    Luis Augusto Dallan
    Patricia Ely Pizzato
    Vladislav Zimin
    Anas Fares
    Hiram G. Bezerra
    The International Journal of Cardiovascular Imaging, 2020, 36 : 1013 - 1020
  • [33] An assessment of the quality of optical coherence tomography image acquisition
    Zago, Elder Iarossi
    Samdani, Abdul Jawwad
    Pereira, Gabriel Tensol Rodrigues
    Vergara-Martel, Armando
    Alaiti, Mohamad Amer
    Dallan, Luis Augusto
    Pizzato, Patricia Ely
    Zimin, Vladislav
    Fares, Anas
    Bezerra, Hiram G.
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2020, 36 (06): : 1013 - 1020
  • [34] Assessment of image quality and impact of deep learning-based software in non-contrast head CT scans
    Bos, Denise
    Demircioglu, Aydin
    Neuhoff, Julia
    Haubold, Johannes
    Zensen, Sebastian
    Opitz, Marcel K.
    Drews, Marcel A.
    Li, Yan
    Styczen, Hanna
    Forsting, Michael
    Nassenstein, Kai
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [35] A Comparative Study on Macular Optical Coherence Tomography Image Alignment
    Li, Annan
    Cheng, Jun
    Wong, Damon wing Kee
    Liu, Jiang
    2014 IEEE CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2014, : 7 - 10
  • [36] Development of a deep learning system to detect glaucoma using macular vertical optical coherence tomography scans of myopic eyes
    Ji-Ah Kim
    Hanbit Yoon
    Dayun Lee
    MoonHyun Kim
    JoonHee Choi
    Eun Ji Lee
    Tae-Woo Kim
    Scientific Reports, 13
  • [37] Deep learning-based detection of diabetic macular edema using optical coherence tomography and fundus images: A meta-analysis
    Manikandan, Suchetha
    Raman, Rajiv
    Rajalakshmi, Ramachandran
    Tamilselvi, S.
    Surya, Janani
    INDIAN JOURNAL OF OPHTHALMOLOGY, 2023, 71 (05) : 1783 - 1796
  • [38] Development of a deep learning system to detect glaucoma using macular vertical optical coherence tomography scans of myopic eyes
    Kim, Ji-Ah
    Yoon, Hanbit
    Lee, Dayun
    Kim, MoonHyun
    Choi, JoonHee
    Lee, Eun Ji
    Kim, Tae-Woo
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [39] DISEASE CLASSIFICATION OF MACULAR OPTICAL COHERENCE TOMOGRAPHY SCANS USING DEEP LEARNING SOFTWARE Validation on Independent, Multicenter Data
    Bhatia, Kanwal K.
    Graham, Mark S.
    Terry, Louise
    Wood, Ashley
    Tranos, Paris
    Trikha, Sameer
    Jaccard, Nicolas
    RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2020, 40 (08): : 1549 - 1557
  • [40] Deep learning-based automatic segmentation of ellipsoid zone defects in optical coherence tomography images of macular telangiectasia type 2
    Loo, Jessica
    Fang, Leyuan
    Cunefare, David
    Jaffe, Glenn J.
    Farsiu, Sina
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)