Investigation of the freeze-thaw deterioration behavior of hydraulic concrete under various curing temperatures

被引:1
|
作者
Li, Yanlong [1 ]
Liu, Yaofei [1 ]
Guo, Hanyu [1 ,2 ]
Li, Yang
机构
[1] Xian Univ Technol, State Key Lab Ecohydraul Northwest Arid Reg, Xian 710048, Peoples R China
[2] Xi An Jiao Tong Univ, Dept Civil Engn, Xian 710049, Peoples R China
来源
JOURNAL OF BUILDING ENGINEERING | 2024年 / 95卷
基金
中国国家自然科学基金;
关键词
Hydraulic concrete; Curing temperature; Frost resistance; Pore structure; F -T damage model; DAMAGE; CYCLES; RESISTANCE; MODEL;
D O I
10.1016/j.jobe.2024.110247
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
To address the issue of damage and deterioration of hydraulic concrete materials in cold regions, experiments were conducted to investigate the microstructural and mechanical properties of concrete under the combined effects of various curing temperatures and freeze-thaw (F-T) cycles. The results indicate that as the curing temperature decreases, the peak compressive strength of concrete decreases, while the peak strain increases and the elastic modulus decreases. These trends become more pronounced with the progression of F-T cycles. Additionally, during the compression failure process of concrete, the amplitude of the acoustic emission exhibits a more significant and rapid increase as it approaches the critical state, indicating a stronger brittle characteristic of concrete after F-T damage. Microscopic test results demonstrate that the influence of curing temperature on the pore structure of concrete after F-T primarily manifests in the mesopores and large pores. Moreover, the reduction in curing temperature increases internal defects in concrete, deteriorates the crystallinity of hydration products, and leads to the aggregation of unhydrated cement particles. Insufficient curing temperatures slow the hydration rate of cementitious materials, affecting the density and overall performance of concrete. Finally, damage prediction models based on the Weibull distribution were established, using the relative dynamic modulus of elasticity, compressive strength loss rate, and mass loss rate as damage factors. The model based on the relative dynamic modulus of elasticity was more sensitive to the number of F-T cycles. All models exhibited a goodness of fit exceeding 0.89, indicating that they accurately reflect variations in the observed data and can be used to predict the service life of concrete under F-T cycles. This provides theoretical references for the degradation and damage of hydraulic concrete in cold regions.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Fracture behavior of dredged sand concrete under freeze-thaw cycles
    Xu, Huiying
    Bu, Jingwu
    Chen, Xudong
    Chen, Qian
    Xu, Bo
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 366
  • [22] Performance Deterioration of High Strength Concrete under Mixed Erosion and Freeze-Thaw Cycling
    Zhang, Jian
    Diao, Bo
    Zheng, Xiaoning
    Li, Yandong
    ADVANCES IN STRUCTURES, PTS 1-5, 2011, 163-167 : 1655 - +
  • [23] Deterioration of concrete under the coupling action of freeze-thaw cycles and salt solution erosion
    Li, Hao
    Guo, Haolong
    Zhang, Yuan
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2022, 61 (01) : 322 - 333
  • [24] The deterioration law of recycled concrete under the combined effects of freeze-thaw and sulfate attack
    Xiao, Qian Hui
    Li, Qiang
    Cao, Zhi Yuan
    Tian, Wei Yu
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 200 : 344 - 355
  • [25] Laboratory investigation on mechanical and hydraulic properties of sandstone under freeze-thaw cycle
    Liu, Bo
    Sun, Yanding
    Han, Yanhui
    Liu, Nian
    Li, Ting
    ENVIRONMENTAL EARTH SCIENCES, 2022, 81 (05)
  • [26] Study on the Performance Evolution of Hydraulic Concrete under the Alternating Action of Freeze-Thaw and Abrasion
    Wu, Baoguo
    Li, Shuangxi
    Jiang, Chunmeng
    BUILDINGS, 2024, 14 (05)
  • [27] Study on the damage mechanism of hydraulic concrete under the alternating action of freeze-thaw and abrasion
    Li, Shuangxi
    Wu, Baoguo
    Jiang, Chunmeng
    Wu, Liang
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 447
  • [28] Damage analysis of freeze-thaw processes in hydraulic structure concrete
    Gong Yaqi
    Cui Jianghua
    Su Haidong
    Shan Liang
    TRENDS IN CIVIL ENGINEERING, PTS 1-4, 2012, 446-449 : 2681 - 2684
  • [29] Mesoscopic Numerical Simulation of Freeze-Thaw Damage in Hydraulic Concrete
    Wang, Ruijun
    Liu, Yunhui
    Liu, Jun
    Li, Yang
    Jin, Ruibao
    Liang, Gang
    Yu, Ningning
    Hu, Jing
    Zhou, Hekuan
    Jia, Yaofei
    Liu, Yanxiong
    BUILDINGS, 2024, 14 (09)
  • [30] Research on the freeze-thaw relation of hydraulic structure concrete under laboratory and natural conditions
    Ren, Xiao-Zhong
    Li, Hao-Yu
    Wei, Ming-Zheng
    ADVANCED MATERIALS AND ENERGY SUSTAINABILITY, 2017, : 342 - 349