Power Quotients of Plactic-like Monoids

被引:0
|
作者
Abram, Antoine [1 ]
Mitchell, James D. [2 ]
Tsalakou, Maria [2 ]
Hivert, Florent [3 ]
Novelli, Jean-Christophe [4 ]
机构
[1] Univ Quebec Montreal, LACIM, Montreal, PQ, Canada
[2] Univ St Andrews, Sch Math & Stat, St Andrews, Scotland
[3] Univ Paris Saclay, LISN, Orsay, France
[4] Univ Gustave Eiffel, LIGM, Marne La Vallee, France
基金
欧盟地平线“2020”;
关键词
D O I
10.4204/EPTCS.403.6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we describe the quotients of several plactic-like monoids by the least congruences containing the relations a sigma(a) = a with sigma(a) >= 2 for every generator a . The starting point for this description is the recent paper of Abram and Reutenauer about the so-called stylic monoid which happens to be the quotient of the plactic monoid by the relations a(2) = a for every letter a . The plactic-like monoids considered are the plactic monoid itself, the Chinese monoid, and the sylvester monoid. In each case we describe: a set of normal forms, and the idempotents; and obtain formulae for their size.
引用
收藏
页数:208
相关论文
共 50 条
  • [21] Combinatorics of cyclic shifts in plactic, hypoplactic, sylvester, Baxter, and related monoids
    Cain, Alan J.
    Malheiro, Antonio
    JOURNAL OF ALGEBRA, 2019, 535 : 159 - 224
  • [22] ON KISELMAN QUOTIENTS OF 0-HECKE MONOIDS
    Ganyushkin, Olexandr
    Mazorchuk, Volodymyr
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2011, 10 : 174 - 191
  • [23] Quotients of partial abelian monoids and the Riesz decomposition property
    Gejza Jenča
    Sylvia Pulmannová
    algebra universalis, 2002, 47 : 443 - 477
  • [24] Quotients of partial abelian monoids and the Riesz decomposition property
    Jenca, G
    Pulmannová, S
    ALGEBRA UNIVERSALIS, 2002, 47 (04) : 443 - 477
  • [25] Crystal monoids & crystal bases: Rewriting systems and biautomatic structures for plactic monoids of types An, Bn, Cn, Dn, and G2
    Cain, Alan J.
    Gray, Robert D.
    Malheiro, Antonio
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 162 : 406 - 466
  • [26] FINITE QUOTIENTS OF SINGULAR ARTIN MONOIDS AND CATEGORIFICATION OF THE DESINGULARIZATION MAP
    Jonsson, Helena
    Mazorchuk, Volodymyr
    Westin, Elin Persson
    Srivastava, Shraddha
    Stroinski, Mateusz
    Zhu, Xiaoyu
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (06) : 1255 - 1302
  • [27] On algebraic properties of power monoids of numerical monoids
    Pierre-Yves Bienvenu
    Alfred Geroldinger
    Israel Journal of Mathematics, 2025, 265 (2) : 867 - 900
  • [28] POWER MONOIDS AND FINITE J-TRIVIAL MONOIDS
    MARGOLIS, SW
    PIN, JE
    SEMIGROUP FORUM, 1984, 29 (1-2) : 99 - 108
  • [29] Arrows, like Monads, are Monoids
    Heunen, Chris
    Jacobs, Bart
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2006, 158 : 219 - 236
  • [30] A CLASSIFICATION OF APERIODIC POWER MONOIDS
    ALMEIDA, J
    JOURNAL OF ALGEBRA, 1994, 170 (02) : 355 - 387