In this paper we describe the quotients of several plactic-like monoids by the least congruences containing the relations a sigma(a) = a with sigma(a) >= 2 for every generator a . The starting point for this description is the recent paper of Abram and Reutenauer about the so-called stylic monoid which happens to be the quotient of the plactic monoid by the relations a(2) = a for every letter a . The plactic-like monoids considered are the plactic monoid itself, the Chinese monoid, and the sylvester monoid. In each case we describe: a set of normal forms, and the idempotents; and obtain formulae for their size.
机构:
NOVA Sch Sci & Technol NOVA FCT, Ctr Math & Applicat NOVA Math, P-2829516 Caparica, PortugalUniv Manchester, Dept Math, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, England
机构:
Univ Nova Lisboa, Fac Ciencias & Tecnol, Ctr Matemat & Aplicacoes, P-2829516 Caparica, PortugalUniv Nova Lisboa, Fac Ciencias & Tecnol, Ctr Matemat & Aplicacoes, P-2829516 Caparica, Portugal
Cain, Alan J.
Johnson, Marianne
论文数: 0引用数: 0
h-index: 0
机构:
Univ Manchester, Dept Math, Manchester M13 9PL, EnglandUniv Nova Lisboa, Fac Ciencias & Tecnol, Ctr Matemat & Aplicacoes, P-2829516 Caparica, Portugal
Johnson, Marianne
Kambites, Mark
论文数: 0引用数: 0
h-index: 0
机构:
Univ Manchester, Dept Math, Manchester M13 9PL, EnglandUniv Nova Lisboa, Fac Ciencias & Tecnol, Ctr Matemat & Aplicacoes, P-2829516 Caparica, Portugal
Kambites, Mark
Malheiro, Antonio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nova Lisboa, Fac Cienciase Tecnol, Dept Matemat, P-2829516 Caparica, Portugal
Univ Nova Lisboa, Fac Cienciase Tecnol, Ctr Matemat & Aplicacoes, P-2829516 Caparica, PortugalUniv Nova Lisboa, Fac Ciencias & Tecnol, Ctr Matemat & Aplicacoes, P-2829516 Caparica, Portugal
机构:
NOVA Sch Sci & Technol NOVA FCT, Ctr Math & Applicat NOVA Math, P-2829516 Caparica, PortugalUniv Manchester, Dept Math, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, England
机构:
NOVA Sch Sci & Technol NOVA FCT, Ctr Math & Applicat NOVA Math, P-2829516 Caparica, PortugalNOVA Sch Sci & Technol NOVA FCT, Ctr Math & Applicat NOVA Math, P-2829516 Caparica, Portugal
机构:
Univ Nova Lisboa, Fac Ciencias & Tecnol, Ctr Matemat & Aplicacoes, P-2829516 Caparica, PortugalUniv Nova Lisboa, Fac Ciencias & Tecnol, Ctr Matemat & Aplicacoes, P-2829516 Caparica, Portugal
Cain, Alan J.
Malheiro, Antonio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nova Lisboa, Fac Ciencias & Tecnol, Ctr Matemat & Aplicacoes, P-2829516 Caparica, Portugal
Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, P-2829516 Caparica, PortugalUniv Nova Lisboa, Fac Ciencias & Tecnol, Ctr Matemat & Aplicacoes, P-2829516 Caparica, Portugal
Malheiro, Antonio
ELECTRONIC JOURNAL OF COMBINATORICS,
2018,
25
(03):
机构:
Univ Lyon, UJM St Etienne, CNRS UMR 5208, Inst Camille Jordan, 10 Rue Trefilerie,CS 82301, F-42023 St Etienne, FranceUniv Lyon, UJM St Etienne, CNRS UMR 5208, Inst Camille Jordan, 10 Rue Trefilerie,CS 82301, F-42023 St Etienne, France