Z-scheme FeOOH/g-C3N4 nanosheets promoted PDS activation for efficient tetracycline degradation under visible light

被引:0
|
作者
Li, Yongqi [1 ]
Qu, Chao [1 ]
Ye, Qing [1 ]
Meng, Fanwei [1 ]
Yang, Decai [1 ]
Wang, Lanyang [1 ]
机构
[1] Beijing Univ Technol, Coll Environm Sci & Engn, Dept Environm Sci, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Photocatalysis; PDS activation; Graphitic carbon nitride; FeOOH; Tetracycline; CARBON NITRIDE; OXIDATION; REMOVAL; HETEROJUNCTION; ANTIBIOTICS; PERFORMANCE; ADSORPTION; MECHANISM;
D O I
10.1016/j.jece.2024.113791
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recently, photocatalysis combined peroxydisulfate (PDS) activation as a novel advanced oxidation processes (AOPs) was applied to remove pharmaceuticals and personal care products (PPCPs) in waterbody. Under visible light irradiation, photocatalysts, such as graphitic carbon nitride (g-C3N4, CN), could generated holes and electrons for both organic oxidation and PDS activation. However, it exhibits the drawbacks of low organics removal rate, high electron-hole recombination rate and low activation efficiency of PDS. In this study, amorphous iron oxyhydroxide (FeOOH) was intercalated into the surface of the g-C3N4 nanosheets (CNNS) to form a Z-scheme heterojunction to solve these problems. Electrochemical impedance spectroscopy (EIS) and photoluminescence spectrum (PL) tests proved the enhancement of the charge separation and migration capability of FeOOH/CNNS. The density functional theory (DFT) supported the constructive role of the Z-type heterojunction between FeOOH and CNNS in promoting photocarrier transfer and facilitating more effective PDS activation reactions. The removal rate of tetracycline (TC) achieved 98.8 % within 80 min by FeOOH/CNNS coupled PDS under visible light (FeOOH/CNNS-PDS/Vis) system. Finally, electron spin resonance (ESR) approved the pivotal role of (OH)-O-center dot, SO4 center dot-, and O-center dot(2)- during the process.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] The visible light hydrogen production of the Z-Scheme Ag3PO4/Ag/g-C3N4 nanosheets composites
    Mingzhu You
    Jiaqi Pan
    Chunyan Chi
    Beibei Wang
    Weijie Zhao
    Changsheng Song
    Yingying Zheng
    Chaorong Li
    Journal of Materials Science, 2018, 53 : 1978 - 1986
  • [22] Z-Scheme ZnV2O4/g-C3N4 Heterojunction Catalyst Produced by the One-Pot Method for the Degradation of Tetracycline under Visible Light
    Yi, Siyuan
    Li, Yuzhen
    Sun, Zhaoxin
    Li, Shuo
    Gao, Lizhen
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (01) : 72 - 84
  • [23] Enhanced photocatalytic degradation of tetracycline under visible light by using a ternary photocatalyst of Ag3PO4/AgBr/g-C3N4 with dual Z-scheme heterojunction
    Yu, Hongbin
    Wang, Danyang
    Zhao, Bin
    Lu, Ying
    Wang, Xinhong
    Zhu, Suiyi
    Qin, Weichao
    Huo, Mingxin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 237 (237)
  • [24] Ag supported Z-scheme WO2.9/g-C3N4 composite photocatalyst for photocatalytic degradation under visible light
    Zhao, Xin
    Zhang, Xiaojing
    Han, Dongxue
    Niu, Li
    Applied Surface Science, 2022, 501
  • [25] Ag supported Z-scheme WO2.9/g-C3N4 composite photocatalyst for photocatalytic degradation under visible light
    Zhao, Xin
    Zhang, Xiaojing
    Han, Dongxue
    Niu, Li
    APPLIED SURFACE SCIENCE, 2020, 501
  • [26] Enhanced photocatalytic degradation activity of Z-scheme heterojunction BiVO4/Cu/g-C3N4 under visible light irradiation
    Li, Jing
    Ma, Yuxuan
    Xu, Yuan
    Li, Pengtao
    Guo, Jifeng
    WATER ENVIRONMENT RESEARCH, 2021, 93 (10) : 2010 - 2024
  • [27] Facile construction of Z-scheme g-C3N4/BiOI heterojunction for improving degradation of tetracycline antibiotics
    Luo, Xi
    Pu, Shulan
    Duan, Yujie
    Mao, Linjiao
    Lei, Ke
    Sun, Yan
    MATERIALS LETTERS, 2024, 354
  • [28] Improving g-C3N4:WO3 Z-scheme photocatalytic performance under visible light by multivariate optimization of g-C3N4 synthesis
    Cadan, Fellipe Magioli
    Ribeiro, Caue
    Azevedo, Eduardo Bessa
    APPLIED SURFACE SCIENCE, 2021, 537
  • [29] Synthesis of a novel Z-scheme Ag/WO3/g-C3N4 nanophotocatalyst for degradation of oxytetracycline hydrochloride under visible light
    Ouyang, Ke
    Xu, Bingqing
    Yang, Chao
    Wang, Hui
    Zhan, Peng
    Xie, Shan
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2022, 137
  • [30] Synthesis of a novel Z-scheme Ag/WO3/g-C3N4 nanophotocatalyst for degradation of oxytetracycline hydrochloride under visible light
    Ouyang, Ke
    Xu, Bingqing
    Yang, Chao
    Wang, Hui
    Zhan, Peng
    Xie, Shan
    Materials Science in Semiconductor Processing, 2022, 137