PlasmidHunter: accurate and fast prediction of plasmid sequences using gene content profile and machine learning

被引:2
|
作者
Tian, Renmao [1 ]
Zhou, Jizhong [2 ]
Imanian, Behzad [1 ,3 ]
机构
[1] IIT, Inst Food Safety & Hlth, 6502 S Archer Rd, Bedford Pk, IL 60501 USA
[2] Univ Oklahoma, Inst Environm Genom, Dept Microbiol & Plant Biol, 101 David Boren Blvd, Norman, OK 73019 USA
[3] IIT, Food Sci & Nutr Dept, 10 West 35th St, Chicago, IL 60616 USA
关键词
artificial intelligence (AI); machine learning (ML); plasmid prediction; genomic sequencing; RESISTANCE;
D O I
10.1093/bib/bbae322
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Plasmids are extrachromosomal DNA found in microorganisms. They often carry beneficial genes that help bacteria adapt to harsh conditions. Plasmids are also important tools in genetic engineering, gene therapy, and drug production. However, it can be difficult to identify plasmid sequences from chromosomal sequences in genomic and metagenomic data. Here, we have developed a new tool called PlasmidHunter, which uses machine learning to predict plasmid sequences based on gene content profile. PlasmidHunter can achieve high accuracies (up to 97.6%) and high speeds in benchmark tests including both simulated contigs and real metagenomic plasmidome data, outperforming other existing tools.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Fast Learning and Prediction of Event Sequences in a Robotic System
    Persia, Fabio
    D'Auria, Daniela
    Pilato, Giovanni
    2020 FOURTH IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING (IRC 2020), 2020, : 447 - 452
  • [42] Fast CU Partition Decision Using Machine Learning for Screen Content Compression
    Duanmu, Fanyi
    Ma, Zhan
    Wang, Yao
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4972 - 4976
  • [43] Accurate Prediction of Gene Mutations with Flow Cytometry Immune-Phenotyping By Machine Learning Algorithm
    Ko, Bor-Sheng
    Wang, Yu-Fen
    Li, Jeng-Lin
    Hou, Hsin-An
    Chou, Wen-Chien
    Tien, Hwei-Fang
    Chang, Ting-Yu
    Lee, Chi-Chun
    BLOOD, 2020, 136
  • [44] RFPlasmid: predicting plasmid sequences from short-read assembly data using machine learning
    van der Graaf-van Bloois, Linda
    Wagenaar, Jaap A.
    Zomer, Aldert L.
    MICROBIAL GENOMICS, 2021, 7 (11):
  • [45] Fast and accurate prediction of temperature evolutions in additive manufacturing process using deep learning
    Pham, Thinh Quy Duc
    Hoang, Truong Vinh
    Van Tran, Xuan
    Pham, Quoc Tuan
    Fetni, Seifallah
    Duchene, Laurent
    Tran, Hoang Son
    Habraken, Anne-Marie
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (04) : 1701 - 1719
  • [46] Fast and accurate prediction of temperature evolutions in additive manufacturing process using deep learning
    Thinh Quy Duc Pham
    Truong Vinh Hoang
    Xuan Van Tran
    Quoc Tuan Pham
    Seifallah Fetni
    Laurent Duchêne
    Hoang Son Tran
    Anne-Marie Habraken
    Journal of Intelligent Manufacturing, 2023, 34 : 1701 - 1719
  • [47] Fast and accurate Ab Initio Protein structure prediction using deep learning potentials
    Pearce, Robin
    Li, Yang
    Omenn, Gilbert S.
    Zhang, Yang
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (09)
  • [48] Smart Building Energy Management: Load Profile Prediction using Machine Learning
    Revati, G.
    Hozefa, J.
    Shadab, S.
    Sheikh, A.
    Wagh, S. R.
    Singh, N. M.
    2021 29TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2021, : 380 - 385
  • [49] Fast and accurate prediction of cure quality and mechanical performance in fiber-reinforced polymer composite using dielectric variables and machine learning
    Rabby, Monjur Morshed
    Das, Partha Pratim
    Rahman, Minhazur
    Vadlamudi, Vamsee
    Raihan, Rassel
    POLYMER COMPOSITES, 2024, 45 (02) : 1810 - 1825
  • [50] Accurate prediction of the energetics of weakly bound complexes using the machine learning method kriging
    Maxwell, Peter I.
    Popelier, Paul L. A.
    STRUCTURAL CHEMISTRY, 2017, 28 (05) : 1513 - 1523