Biclique immersions in graphs with independence number 2

被引:0
|
作者
Botler, F. [1 ]
Jimenez, A. [2 ,3 ]
Lintzmayer, C. N. [4 ]
Pastine, A. [5 ,6 ]
Quiroz, D. A. [2 ,3 ]
Sambinelli, M. [4 ]
机构
[1] Univ Sao Paulo, Dept Ciencia Computacao, Inst Matemat & Estat, Sao Paulo, Brazil
[2] Univ Valparaiso, Inst Ingn Matemat, Valparaiso, Chile
[3] Univ Valparaiso, CIMFAV, Valparaiso, Chile
[4] Univ Fed ABC, Ctr Matemat Computacao & Cognicao, Santo Andre, Brazil
[5] Consejo Nacl Invest Cient & Tecn, Inst Matemat Aplicada San Luis, San Luis, Argentina
[6] Univ Nacl San Luis, San Luis, Argentina
基金
巴西圣保罗研究基金会;
关键词
THEOREM; MINORS;
D O I
10.1016/j.ejc.2024.104042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The analogue of Hadwiger's conjecture for the immersion relation states that every graph G contains an immersion of K-chi(G). For graphs with independence number 2, this is equivalent to stating that every such n-vertex graph contains an immersion of K-(sic)n/2(sic). We show that every n-vertex graph with independence number 2 contains every complete bipartite graph on (sic)n/2(sic) vertices as an immersion. (c) 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Complexes of graphs with bounded independence number
    Minki Kim
    Alan Lew
    Israel Journal of Mathematics, 2022, 249 : 83 - 120
  • [42] On the broadcast independence number of circulant graphs
    Laouar, Abdelamin
    Bouchemakh, Isma
    Sopena, Eric
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (05)
  • [43] Computing the Independence Number of Intersection Graphs
    Fox, Jacob
    Pach, Janos
    PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2011, : 1161 - 1165
  • [44] Exponential Independence Number of Some Graphs
    Ciftci, Canan
    Aytac, Aysun
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2018, 29 (07) : 1151 - 1164
  • [45] COMPLEXES OF GRAPHS WITH BOUNDED INDEPENDENCE NUMBER
    Kim, Minki
    Lew, Alan
    ISRAEL JOURNAL OF MATHEMATICS, 2022, 249 (01) : 83 - 120
  • [46] F-INDEPENDENCE NUMBER OF GRAPHS
    FARAGO, A
    COMBINATORICS /, 1988, 52 : 221 - 226
  • [47] On the independence number of minimum distance graphs
    G. Csizmadia
    Discrete & Computational Geometry, 1998, 20 : 179 - 187
  • [48] Cubic graphs with equal independence number and matching number
    Mohr, Elena
    Rautenbach, Dieter
    DISCRETE MATHEMATICS, 2021, 344 (01)
  • [49] On the number of independent sets in graphs with fixed independence number
    Daynyak, A. B.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2007, 17 (03): : 249 - 252
  • [50] Regular graphs with equal matching number and independence number
    Yang, Zixuan
    Lu, Hongliang
    DISCRETE APPLIED MATHEMATICS, 2022, 310 : 86 - 90