Biclique immersions in graphs with independence number 2

被引:0
|
作者
Botler, F. [1 ]
Jimenez, A. [2 ,3 ]
Lintzmayer, C. N. [4 ]
Pastine, A. [5 ,6 ]
Quiroz, D. A. [2 ,3 ]
Sambinelli, M. [4 ]
机构
[1] Univ Sao Paulo, Dept Ciencia Computacao, Inst Matemat & Estat, Sao Paulo, Brazil
[2] Univ Valparaiso, Inst Ingn Matemat, Valparaiso, Chile
[3] Univ Valparaiso, CIMFAV, Valparaiso, Chile
[4] Univ Fed ABC, Ctr Matemat Computacao & Cognicao, Santo Andre, Brazil
[5] Consejo Nacl Invest Cient & Tecn, Inst Matemat Aplicada San Luis, San Luis, Argentina
[6] Univ Nacl San Luis, San Luis, Argentina
基金
巴西圣保罗研究基金会;
关键词
THEOREM; MINORS;
D O I
10.1016/j.ejc.2024.104042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The analogue of Hadwiger's conjecture for the immersion relation states that every graph G contains an immersion of K-chi(G). For graphs with independence number 2, this is equivalent to stating that every such n-vertex graph contains an immersion of K-(sic)n/2(sic). We show that every n-vertex graph with independence number 2 contains every complete bipartite graph on (sic)n/2(sic) vertices as an immersion. (c) 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Large Immersions in Graphs with Independence Number 3 and 4
    Bustamante, S.
    Quiroz, D. A.
    Stein, M.
    Zamora, J.
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2019, 346 : 221 - 228
  • [2] Complete immersions in graphs with independence number two and small forbidden subgraphs
    Quiroz, Daniel A.
    PROCEEDINGS OF THE XI LATIN AND AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, 2021, 195 : 343 - 349
  • [3] Clique immersions in graphs of independence number two with certain forbidden subgraphs
    Quiroz, Daniel A.
    DISCRETE MATHEMATICS, 2021, 344 (06)
  • [4] Clique immersions and independence number
    Bustamante, Sebastian
    Quiroz, Daniel A.
    Stein, Maya
    Zamora, Jose
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 106
  • [5] THE BICLIQUE PARTITION NUMBER OF SOME IMPORTANT GRAPHS
    Rawshdeh, Eman
    Al-Ezeh, Hasan
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (41): : 274 - 283
  • [6] Biclique Graphs and Biclique Matrices
    Groshaus, Marina
    Szwarcfiter, Jayme L.
    JOURNAL OF GRAPH THEORY, 2010, 63 (01) : 1 - 16
  • [7] On the 2-independence subdivision number of graphs
    Meddah, Nacera
    Blidia, Mostafa
    Chellali, Mustapha
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2022, 7 (01) : 105 - 112
  • [8] Packing cliques in graphs with independence number 2
    Yuster, Raphael
    COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (05): : 805 - 817
  • [9] Independence number in path graphs
    Knor, M
    Niepel, L
    COMPUTING AND INFORMATICS, 2004, 23 (02) : 179 - 187
  • [10] ON THE INDEPENDENCE NUMBER OF RANDOM GRAPHS
    FRIEZE, AM
    DISCRETE MATHEMATICS, 1990, 81 (02) : 171 - 175