Generation of Bessel vortex beams in the subterahertz range using reflecting diffractive optical elements

被引:0
|
作者
Gerasimov, V. V. [1 ,2 ]
Osintseva, N. D. [2 ]
Pavelyev, V. S. [3 ,4 ]
Agafonov, A. N. [3 ]
机构
[1] Novosibirsk State Univ, Res Lab Appl Electrodynam, Pirogova St 1, Novosibirsk 630090, Russia
[2] RAS, SB, Budker Inst Nucl Phys, Lavrentyeva Ave 11, Novosibirsk 630090, Russia
[3] Samara Natl Res Univ, Nanoengn Dept, Moskovskoye Shosse 34, Samara 443086, Russia
[4] NRC Kurchatov Inst, Image Proc Syst Inst, Molodogvardeyskaya 151, Samara 443001, Russia
关键词
diffractive optics; subterahertz range; Bessel beam; vortex beam; reflecting diffractive optical element;
D O I
10.18287/2412-6179-CO-1410
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work, we propose a simple method for generating Bessel vortex beams in the subterahertz (subTHz) range with the orbital angular momentum with l = 1 based on reflecting metal diffractive optical elements with a continuous helical microrelief. The elements are fabricated by micromilling in a polished duralumin substrate and by tin casting, and tested using a backward wave oscillator (wavelength lambda = 855 mu m). When using the micromilled element, Bessel vortex beams are shown to be generated and retain a Bessel intensity profile at a distance of 20 - 50 mm from the reflecting element, which is in good agreement with the results of numerical simulation. An experimental estimate of the energy efficiency of this element is 63%. When using elements made by tin casting, the vortex beams are generated with a distorted profile due to the presence of residual deformations of tin, which has plasticity. Due to their high conductivity, metallic reflecting elements can be used with high power density sub-THz radiation sources such as free electron lasers and gyrotrons.
引用
收藏
页码:334 / 341
页数:9
相关论文
共 50 条
  • [41] Design and verification of diffractive optical elements for speckle generation of 3-D range sensors
    Pei-Qin Du
    Hsi-Fu Shih
    Jenq-Shyong Chen
    Yi-Shiang Wang
    Optical Review, 2016, 23 : 1017 - 1025
  • [42] Nondiffracting Millimeter Waves Beams Generated by Diffractive Optical Elements
    Yu, Y. Z.
    Dou, W. B.
    2008 EUROPEAN MICROWAVE CONFERENCE, VOLS 1-3, 2008, : 29 - 32
  • [43] Diffractive optical elements for the generating cylindrical beams of different orders
    Degtyarev, S. A.
    Savelyev, D. A.
    Karpeev, S. V.
    COMPUTER OPTICS, 2019, 43 (03) : 347 - 355
  • [44] BINARY-MASK GENERATION FOR DIFFRACTIVE OPTICAL-ELEMENTS USING MICROCOMPUTERS
    OSHEA, DC
    BELETIC, JW
    POUTOUS, M
    APPLIED OPTICS, 1993, 32 (14): : 2566 - 2572
  • [45] Generation of diffractive optical elements onto a photopolymer using a liquid crystal display
    Marquez, A.
    Gallego, S.
    Ortuno, M.
    Fernandez, E.
    Alvarez, M. L.
    Belendez, A.
    Pascual, I.
    OPTICAL MODELLING AND DESIGN, 2010, 7717
  • [46] GENERATION OF RADIALLY POLARIZED ZERO-ORDER BESSEL BEAMS BY DIFFRACTIVE AND POLARIZATION OPTICS
    Karpeev, S. V.
    COMPUTER OPTICS, 2016, 40 (04) : 583 - 587
  • [47] Generation and manipulation of vortex beams in optical superlattice
    Chen Y.
    Hu X.
    Zhang Y.
    Zhu S.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2020, 52 (06): : 12 - 20
  • [48] GENERATION OF OPTICAL VORTEX BEAMS BY COMPACT STRUCTURES
    Mehmood, M. Q.
    Qiu, Cheng-Wei
    Danner, Aaron
    Teng, Jinghua
    JOURNAL OF MOLECULAR AND ENGINEERING MATERIALS, 2014, 2 (02)
  • [49] Subwavelength Diffractive Optical Elements for Generation of Terahertz Coherent Beams with Pre-Given Polarization State
    Pavelyev, Vladimir
    Khonina, Svetlana
    Degtyarev, Sergey
    Tukmakov, Konstantin
    Reshetnikov, Anton
    Gerasimov, Vasily
    Osintseva, Natalya
    Knyazev, Boris
    SENSORS, 2023, 23 (03)
  • [50] Generation of long range low-divergent Gauss-Bessel beams by annihilating optical vortices
    Stoyanov, Lyubomir
    Zhekova, Maya
    Stefanov, Aleksander
    Ivanov, Boris
    Stefanov, Ivan
    Paulus, Gerhard G.
    Dreischuh, Alexander
    OPTICS COMMUNICATIONS, 2021, 480