UNSUPERVISED CLUSTERING OF MORPHOLOGY PATTERNS ON WHOLE SLIDE IMAGES GUIDE PROGNOSTIC STRATIFICATION OF GLIOBLASTOMA PATIENTS

被引:1
|
作者
Baheti, B. [1 ,2 ,3 ]
Innani, S. [1 ,2 ,3 ]
Nasrallah, M. P. [1 ,2 ,3 ]
Bakas, S. [1 ,2 ,4 ]
机构
[1] Univ Penn, Ctr Artificial Intelligence & Data Sci Integrated, Philadelphia, PA 19104 USA
[2] Univ Penn, Ctr Biomed Image Comp & Analyt, Philadelphia, PA 19104 USA
[3] Univ Penn, Perelman Sch Med, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Radiol, Perelman Sch Med, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
关键词
D O I
10.1093/neuonc/noad137.043
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
OS03.6.A
引用
收藏
页码:15 / 15
页数:1
相关论文
共 50 条
  • [31] A novel automatic annotation method for whole slide pathological images combined clustering and edge detection technique
    Ding, Wei-long
    Liao, Wan-yin
    Zhu, Xiao-jie
    Zhu, Hong-bo
    IET IMAGE PROCESSING, 2024, 18 (06) : 1516 - 1529
  • [32] Simple Non-Iterative Clustering and CNNs for Coarse Segmentation of Breast Cancer Whole Slide Images
    Albusayli, Rawan
    Graham, Dinny
    Pathmanathan, Nirmala
    Shaban, Muhammad
    Minhas, Fayyaz
    Armes, Jane E.
    Rajpoot, Nasir M.
    MEDICAL IMAGING 2021 - DIGITAL PATHOLOGY, 2021, 11603
  • [33] PRE-RADIATION TUMOR PROGRESSION IMPROVES PROGNOSTIC STRATIFICATION IN GLIOBLASTOMA PATIENTS
    Palmer, Joshua
    Shukla, Gaurav
    Mollaee, Mehri
    Sharma, Dinesh
    Skowronski, Jenna
    Bhamidipati, Deepak
    Champ, Colin
    Glass, Jon
    Kim, Lyndon
    Judy, Kevin
    Evans, James
    Farrell, Christopher
    Andrews, David
    Peiper, Stephen
    Shi, Wenyin
    Wang, Zi-Xuan
    Werner-wasik, Maria
    NEURO-ONCOLOGY, 2016, 18 : 139 - 139
  • [34] Pre-Radiation Tumor Progression Improves Prognostic Stratification In Glioblastoma Patients
    Palmer, J.
    Bhamidipati, D.
    Shukla, G.
    James, E.
    Farrell, C.
    Judy, K.
    Kim, L.
    Glass, J.
    Andrews, D.
    Werner-Wasik, M.
    Shi, W.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S372 - S372
  • [35] Outcomes and prognostic stratification of patients with recurrent glioblastoma treated with salvage stereotactic radiosurgery
    Sharma, Mayur
    Schroeder, Jason L.
    Elson, Paul
    Meola, Antonio
    Barnett, Gene H.
    Vogelbaum, Michael A.
    Suh, John H.
    Chao, Samuel T.
    Mohammadi, Alireza M.
    Stevens, Glen H. J.
    Murphy, Erin S.
    Angelov, Lilyana
    JOURNAL OF NEUROSURGERY, 2019, 131 (02) : 489 - 499
  • [36] Morphological prognostic biomarker generation for cutaneous melanoma whole slide images using a convolutional neural network
    Clarke, Emily
    JOURNAL OF PATHOLOGY, 2024, 264 : S56 - S56
  • [37] A NOVEL PARADIGM FOR DETERMINING MOLECULAR CORRELATES OF TUMOR CELL MORPHOLOGY IN HUMAN GLIOMA WHOLE SLIDE IMAGES
    Kong, Jun
    Cooper, Lee
    Wang, Fusheng
    Gao, Jingjing
    Teodoro, George
    Scarpace, Lisa
    Mikkelsen, Tom
    Schniederjan, Matthew
    Moreno, Carlos
    Saltz, Joel
    Brat, Daniel
    NEURO-ONCOLOGY, 2013, 15 : 158 - 159
  • [38] Prognostic value of automatically extracted nuclear morphometric features in whole slide images of male breast cancer
    Veta, Mitko
    Kornegoor, Robert
    Huisman, Andre
    Verschuur-Maes, Anoek H. J.
    Viergever, Max A.
    Pluim, Josien P. W.
    van Diest, Paul J.
    MODERN PATHOLOGY, 2012, 25 (12) : 1559 - 1565
  • [39] A scalable, cloud-based, unsupervised deep learning system for identification, extraction, and summarization of potentially imperceptible patterns in whole-slide images of breast cancer tissue
    Evans, Jacob L.
    Seo, William
    Macheski-Preston, Mary
    Fritz, Michelle
    Puvanesarajah, Samantha
    Hodge, James
    Gansler, Ted
    Gapstur, Susan
    Gaudet, Mia M.
    Yi, Michelle
    CANCER RESEARCH, 2019, 79 (13)
  • [40] Hyper-AdaC: Adaptive clustering-based hypergraph representation of whole slide images for survival analysis
    Benkirane, Hakim
    Vakalopoulou, Maria
    Christodoulidis, Stergios
    Garberis, Ingrid-Judith
    Michiels, Stefan
    Cournede, Paul-Henry
    MACHINE LEARNING FOR HEALTH, VOL 193, 2022, 193 : 405 - 418