Analysis of Residual Post-Impact Compressive Strength of Composite Laminates Under Hygrothermal Conditions

被引:0
|
作者
Guan, Yue [1 ]
Yan, Shi [1 ]
Chen, Xixi [1 ]
Zhang, Yuxuan [1 ]
Wang, Xin [1 ]
Li, Hanhua [2 ]
Zhao, Yun [3 ]
Zhai, Junjun [4 ]
机构
[1] Harbin Univ Sci & Technol, Dept Engn Mech, Harbin 150000, Peoples R China
[2] Beijing Inst Astronaut Syst Engn, Dept Engn Mech, Beijing 100076, Peoples R China
[3] Bldg 1,Lane 288,Shengrong Rd,Pudong New Area, Shanghai 200120, Peoples R China
[4] North China Inst Aerosp Engn, Coll Aeronaut & Astronaut, Langfang 065000, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite laminates; Hygrothermal aging; Finite element simulation; Failure mode; Post-impact compressive properties; LOW-VELOCITY IMPACT; CARBON-FIBER; MECHANICAL-PROPERTIES; DAMAGE; TEMPERATURE; ABSORPTION; MOISTURE; BEHAVIOR; GLASS; LOAD;
D O I
10.1007/s10443-024-10258-5
中图分类号
TB33 [复合材料];
学科分类号
摘要
This paper is a continuation study of the residual compressive strength of composite laminates after impact under hygrothermal conditions. Two carbon fibre/epoxy plywood specimens with different lay-ups ([45/-45/0/0/45/0/0/0/90/-45/0]s and [45/-45/0/90/0 /0/0/0/90/0/-45/45]s) were investigated, The materials were subjected to 500 h, 1000 h and 2000 h of service time in a climatic chamber at a temperature of 60 degrees C and 100% relative humidity, followed by low-velocity post-impact compression using an energy level of 15 J. Experimental and numerical simulations are used to study the residual compressive strength and damage extension of the material. Using the ultrasonic C-scan technique, the internal damage of the specimens was scanned, and the damage evolution in impact and compression tests was analysed. Damage evolution in impact and compression tests was investigated using ultrasonic C-scanning to scan the internal damage of the specimens. The strain change maps of the specimens during compression are studied using the Digital Imaging (DIC) technique. Vumat subroutine coded in Fortran and used in commercial software (ABAQUS) for numerical simulation. To study the effect of damage extension of materials on post-impact and post-impact compression for different hygrothermal times. It was found that the residual compressive strength depended on factors such as the material's hygrothermal time and the initial defects in the plywood; that the 90 degrees and +/- 45 degrees fibre orientations played a positive role in the material's hygrothermal; that the hygrothermal made the material's damage more catastrophic; and that the buckling of hygrothermal specimens was not only at the impact position, but was also reflected at the edges. In CAI testing, it was found that the hygrothermally treated specimens were damaged similarly to the desiccation treated specimens, but that compression resulted in a flexural position affected by hygrothermal, which determined the material CAI strength.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] EFFECT OF IMPACT DAMAGES ON THE COMPRESSIVE STRENGTH OF COMPOSITE LAMINATES
    HUANG, JY
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 1994, 17 (05) : 743 - 751
  • [22] Impact and Post-impact Behavior of Composite Laminates Reinforced by Z-Pins
    Francesconi, L.
    Aymerich, F.
    MECHANICS OF COMPOSITE, HYBRID AND MULTIFUNCTIONAL MATERIALS, VOL 5, 2019, : 159 - 167
  • [23] Engineering approach for predicting post-impact compressive strength of laminated composites
    Cui, H. -P.
    Wen, W. -D.
    Cui, H. -T.
    MATERIALS SCIENCE AND TECHNOLOGY, 2010, 26 (06) : 699 - 706
  • [24] Finite element prediction of the post-impact compressive strength of fibre composites
    Pavier, MJ
    Clarke, MP
    COMPOSITE STRUCTURES, 1996, 36 (1-2) : 141 - 153
  • [25] Impact damage with compressive preload and post-impact compression of carbon composite plates
    Zhang, X
    Davies, GAO
    Hitchings, D
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 1999, 22 (05) : 485 - 509
  • [26] Compressive strength of composite laminates following free edge impact
    Rhead, Andrew T.
    Marchant, David
    Butler, Richard
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2010, 41 (09) : 1056 - 1065
  • [27] A PREDICTION METHOD FOR THE COMPRESSIVE STRENGTH OF IMPACT DAMAGED COMPOSITE LAMINATES
    XIONG, Y
    POON, C
    STRAZNICKY, PV
    VIETINGHOFF, H
    COMPOSITE STRUCTURES, 1995, 30 (04) : 357 - 367
  • [28] Experiment research on residual compressive strength and fatigue performance of composite laminates with low velocity impact damage
    Zhu, Weiyao
    Xu, Xiwu
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2012, 29 (05): : 171 - 178
  • [29] Damage and residual compressive strength of multi-layer composite laminates after low velocity impact
    Chen Fangyu
    Zhou Li
    Tang Yihao
    INTERNATIONAL JOURNAL OF CRASHWORTHINESS, 2019, 24 (02) : 235 - 241
  • [30] Acoustic emission based investigation on the effect of temperature and hybridization on drop weight impact and post-impact residual strength of hemp and basalt fibres reinforced polymer composite laminates
    Kumar, C. Suresh
    Fotouhi, Mohamad
    Saeedifar, Milad
    Arumugam, V.
    COMPOSITES PART B-ENGINEERING, 2019, 173