Enhanced structural stability and durability in lithium-rich manganese-based oxide via surface double-coupling engineering

被引:3
|
作者
Zhao, Jiayu [1 ,2 ]
Su, Yuefeng [1 ,2 ]
Dong, Jinyang [1 ,2 ]
Wang, Xi [1 ,2 ]
Lu, Yun [1 ,2 ]
Li, Ning [1 ,2 ]
Huang, Qing [1 ,2 ]
Hao, Jianan [1 ,2 ]
Wu, Yujia [1 ,2 ]
Zhang, Bin [3 ]
Qi, Qiongqiong [4 ]
Wu, Feng [1 ,2 ]
Chen, Lai [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Chongqing Innovat Ctr, Chongqing 401120, Peoples R China
[3] Yibin Libode New Mat Co Ltd, Yibin 64400, Sichuan, Peoples R China
[4] Initial Energy Sci & Technol Xiamen Co Ltd, Xiamen 361000, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Lithium -ion battery; Layered lithium -rich cathode; Surface double -coupling engineering; Lattice strain; Oxygen release; LAYERED OXIDE; CATHODE MATERIALS; ORIGIN; PERFORMANCE; DEGRADATION;
D O I
10.1016/j.jechem.2024.06.047
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Lithium-rich manganese-based oxides (LRMOs) exhibit high theoretical energy densities, making them a prominent class of cathode materials for lithium-ion batteries. However, the performance of these layered cathodes often declines because of capacity fading during cycling. This decline is primarily attributed to anisotropic lattice strain and oxygen release from cathode surfaces. Given notable structural transformations, complex redox reactions, and detrimental interface side reactions in LRMOs, the development of a single modification approach that addresses bulk and surface issues is challenging. Therefore, this study introduces a surface double-coupling engineering strategy that mitigates bulk strain and reduces surface side reactions. The internal spinel-like phase coating layer, featuring threedimensional (3D) lithium-ion diffusion channels, effectively blocks oxygen release from the cathode surface and mitigates lattice strain. In addition, the external Li3PO4 coating layer, noted for its superior corrosion resistance, enhances the interfacial lithium transport and inhibits the dissolution of surface transition metals. Notably, the spinel phase, as excellent interlayer, securely anchors Li3PO4 to the bulk lattice and suppresses oxygen release from lattices. Consequently, these modifications considerably boost structural stability and durability, achieving an impressive capacity retention of 83.4% and a minimal voltage decay of 1.49 mV per cycle after 150 cycles at 1 C. These findings provide crucial mechanistic insights into the role of surface modifications and guide the development of high-capacity cathodes with enhanced cyclability. (c) 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:274 / 283
页数:10
相关论文
共 50 条
  • [21] Toward Alleviating Voltage Decay by Sodium Substitution in Lithium-Rich Manganese-Based Oxide Cathodes
    Chen, Song
    Chen, Zhuo
    Xia, Min
    Cao, Chuanbao
    Luo, Yunjun
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (08): : 4065 - 4074
  • [22] Sulfur-Assisted Surface Modification of Lithium-Rich Manganese-Based Oxide toward High Anionic Redox Reversibility
    Xu, Zhou
    Guo, Xingzhong
    Song, Wenjun
    Wang, Junzhang
    Qin, Tengteng
    Yuan, Yifei
    Lu, Jun
    ADVANCED MATERIALS, 2024, 36 (01)
  • [23] Multifunctional surface modification to enhance the electrochemical performance of lithium-rich manganese-based cathode materials
    Su, Zihao
    Guo, Zhihao
    Xie, Haoyu
    Qu, Meizhen
    Wang, Hao
    Peng, Gongchang
    ELECTROCHIMICA ACTA, 2024, 500
  • [24] Suppress oxygen evolution of lithium-rich manganese-based cathode materials via an integrated strategy
    Yu, Wenhua
    Wang, Yanyan
    Wu, Aimin
    Li, Aikui
    Qiu, Zhiwen
    Dong, Xufeng
    Dong, Chuang
    Huang, Hao
    GREEN ENERGY & ENVIRONMENT, 2024, 9 (01) : 138 - 151
  • [25] Suppress oxygen evolution of lithium-rich manganese-based cathode materials via an integrated strategy
    Wenhua Yu
    Yanyan Wang
    Aimin Wu
    Aikui Li
    Zhiwen Qiu
    Xufeng Dong
    Chuang Dong
    Hao Huang
    Green Energy & Environment, 2024, 9 (01) : 138 - 151
  • [26] Dual Effect of Aluminum Doping and Lithium Tungstate Coating on the Surface Improves the Cycling Stability of Lithium-rich Manganese-based Cathode Materials
    Ren Xuqiang
    Li Donglin
    Zhao Zhenzhen
    Chen Guangqi
    Zhao Kun
    Kong Xiangze
    Li Tongxin
    ACTA CHIMICA SINICA, 2020, 78 (11) : 1268 - 1274
  • [27] Research progress on lithium-rich manganese-based lithium-ion batteries cathodes
    Tan, Lei
    Li, Zhao
    Tong, Zhengwang
    Wang, Zhiguo
    Li, Yan
    Wang, Lei
    Shang, Yu
    Bi, Jiaying
    Lei, Shubin
    CERAMICS INTERNATIONAL, 2024, 50 (04) : 5877 - 5892
  • [28] Thiourea treatment broadens the lattice structure to enhance the electrochemical stability of lithium-rich manganese-based materials
    Zhao, Zhifeng
    Feng, Wangjun
    Su, Wenxiao
    Niu, Yueping
    Hu, Wenting
    Zheng, Xiaoping
    Zhang, Li
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2025, 29 (02) : 571 - 583
  • [29] The Enhanced Electrochemical Properties of Lithium-Rich Manganese-Based Cathode Materials via Mg-Al Co-Doping
    Lu, Wanting
    Deng, Wenhui
    Zheng, Xiyan
    Lin, Kunling
    Liu, Mengyuan
    Zhu, Guozhang
    Lin, Jingyi
    Wei, Yi
    Wang, Feng
    Liu, Jiageng
    COATINGS, 2025, 15 (01):
  • [30] Effect of sites of doped Mg on the stability of lattice oxygen in lithium-rich manganese-based cathode materials
    Cui, Xiaoling
    Zhou, Junfei
    Ding, Hao
    Cai, Xingpeng
    Zhang, Jiawen
    Hu, Xinyi
    Zhang, Junwei
    Li, Xin
    Zhu, Junlong
    Zhang, Ningshuang
    Li, Shiyou
    JOURNAL OF POWER SOURCES, 2024, 623