The Stanley-Reisner ideal of the rook complex of polyominoes

被引:2
|
作者
Romeo, Francesco [1 ]
机构
[1] Univ Cassino & Southern Lazio, Dept Elect & Informat Engn, Via Biasio 43, I-03043 Cassino, FR, Italy
关键词
Polyominoes; edge ideal; rook complex; induced matching number; Castelnuovo-Mumford regularity; GRAPHS;
D O I
10.1142/S0219498826500039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the properties of the rook complex R of a polyomino P seen as independence complex of a graph G, and the associated Stanley-Reisner ideal I-R. In particular, we characterize the polyominoes P having a pure rook complex, and the ones whose Stanley-Reisner ideal has linear resolution. Furthermore, we prove that for a class of polyominoes the Castelnuovo-Mumford regularity of I-R coincides with the induced matching number of G.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] ON THE STRUCTURE OF STANLEY-REISNER RINGS ASSOCIATED TO CYCLIC POLYTOPES
    Boehm, Janko
    Papadakis, Stavros Argyrios
    OSAKA JOURNAL OF MATHEMATICS, 2012, 49 (01) : 81 - 100
  • [42] Stability of depths of symbolic powers of Stanley-Reisner ideals
    Le Than Hoa
    Kimura, Kyouko
    Terai, Naoki
    Tran Nam Trung
    JOURNAL OF ALGEBRA, 2017, 473 : 307 - 323
  • [43] Stanley-Reisner环的贝蒂数计算
    齐薇
    成都航空职业技术学院学报, 2017, 33 (01) : 72 - 74
  • [44] Stanley-Reisner resolution of constant weight linear codes
    Johnsen, Trygve
    Verdure, Hugues
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 72 (02) : 471 - 481
  • [45] Licci level Stanley-Reisner ideals with height three
    Giancarlo Rinaldo
    Naoki Terai
    São Paulo Journal of Mathematical Sciences, 2023, 17 : 345 - 386
  • [46] Lefschetz Properties for Quadratic Stanley-Reisner Artinianizations and their Idealizations
    Costa, Barbara
    Gondim, Rodrigo
    LEFSCHETZ PROPERTIES, SLP-WLP 2022, 2024, 59 : 111 - 127
  • [47] ASYMPTOTIC SYZYGIES OF STANLEY-REISNER RINGS OF ITERATED SUBDIVISIONS
    Conca, Aldo
    Juhnke-Kubitzke, Martina
    Welker, Volkmar
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (03) : 1661 - 1691
  • [48] Licci level Stanley-Reisner ideals with height three
    Rinaldo, Giancarlo
    Terai, Naoki
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (01): : 345 - 386
  • [49] Steenrod problem and some graded Stanley-Reisner rings
    Takeda, Masahiro
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (03): : 1725 - 1738
  • [50] Eisenbud-Goto inequality for Stanley-Reisner rings
    Terai, N
    GEOMETRIC AND COMBINATORIAL ASPECTS OF COMMUNTATIVE ALGEBRA, 2001, 217 : 379 - 391