Optimal Steady-State Regulation by State Feedback

被引:0
|
作者
Hafez, Mohamed A. [1 ]
Uzeda, Erick Mejia [1 ]
Broucke, Mireille E. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Steady-state; Regulation; State feedback; Costs; Regulators; Adaptation models; Optimization; Averaging analysis; cerebellum; optimal steady-state (OSS) control; output regulation; NUCLEUS-PREPOSITUS-HYPOGLOSSI; MEMORY TRACE; EYE-MOVEMENT; MOTOR; SYSTEMS; INTEGRATOR; ADAPTATION; STABILITY; LESIONS; SHIFTS;
D O I
10.1109/TAC.2024.3393791
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article formulates the optimal steady-state regulation (OSSR) problem. In addition to asymptotic stability and regulation, the problem includes a cost on maintaining steady-state inputs and outputs to controllers contributing to regulation, contrasting with standard optimal steady-state problems that only include a cost on the steady-state inputs and outputs of the plant. Motivated by applications in neuroscience, we develop a two-timescale adaptive control architecture to solve a specific instance of the OSSR problem for the case of two control modules: an adaptive internal model and a state feedback. The correctness of the design is proved using two-timescale averaging analysis.
引用
收藏
页码:6042 / 6057
页数:16
相关论文
共 50 条
  • [31] A steady-state solution for the optimal pavement resurfacing problem
    Li, YW
    Madanat, S
    TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE, 2002, 36 (06) : 525 - 535
  • [32] Labor market frictions and optimal steady-state inflation
    Carlsson, Mikael
    Westermark, Andreas
    JOURNAL OF MONETARY ECONOMICS, 2016, 78 : 67 - 79
  • [33] Optimal bounded control of steady-state random vibrations
    Dimentberg, MF
    Iourtchenko, DV
    Bratus, AS
    PROBABILISTIC ENGINEERING MECHANICS, 2000, 15 (04) : 381 - 386
  • [34] Optimal Steady-State Control for Isolated Traffic Intersections
    Haddad, Jack
    De Schutter, Bart
    Mahalel, David
    Ioslovich, Ilya
    Gutman, Per-Olof
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (11) : 2612 - 2617
  • [35] STEADY-STATE LABOR TURNOVER AS OPTIMAL HOUSEHOLD BEHAVIOR
    GRUVER, GW
    ZEAGER, LA
    JOURNAL OF REGIONAL SCIENCE, 1994, 34 (01) : 75 - 90
  • [36] Optimal operation of Petlyuk distillation: steady-state behavior
    Norwegian Univ. of Sci. and Technol., Dept. of Chemical Engineering, 7489, Trondheim, Norway
    J Process Control, 5 (407-424):
  • [37] THE OPTIMAL STEADY-STATE IN GROUNDWATER-MANAGEMENT - REPLY
    KNAPP, KC
    FEINERMAN, E
    WATER RESOURCES BULLETIN, 1987, 23 (04): : 723 - 725
  • [38] THE OPTIMAL STEADY-STATE IN GROUNDWATER-MANAGEMENT - DISCUSSION
    REICHARD, EC
    LEFKOFF, LJ
    WATER RESOURCES BULLETIN, 1987, 23 (04): : 717 - 721
  • [39] Complementarity systems in constrained steady-state optimal control
    Jokic, A.
    Lazar, M.
    van den Bosch, P. P. J.
    HYBRID SYSTEMS: COMPUTATION AND CONTROL, 2008, 4981 : 273 - 286
  • [40] Linear-Convex Optimal Steady-State Control
    Lawrence, Liam S. P.
    Simpson-Porco, John W.
    Mallada, Enrique
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (11) : 5377 - 5384